
j„-.;.,!j.lHO

5CJR :;r="~,^
ANL-7621

argonne Bational laboratorg

GEDANKEN: A Simple Typeless Language

Which Permits Functional Data Structures

and Coroutines

by

John C. Reynolds

The facilities of Argonne National Laboratory are owned by t e ni e Energy
ment. . n . e r the t e r . . of a c o - c t J ^ l - 1 0 , - E n g - 3 S , ^betweê ^̂ ^̂ ^̂ ^̂ „^^^^^^,^

Cotnnnission, Argonne Universities .
employs the staff and operates the Laboratory in accordance with polici
lated, approved and reviewed by the Association.

ity
s and programs formu-

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State Unive
Purdue University
Saint Louis University
Southern Illinois University
University of Texas
Washington University
Wayne State University
The University of Wisconsin

rsity

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with r e
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages r e
sulting from the use of any inforination, apparatus, m.ethod, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from

Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Departnnent of Con:im.erce

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

ANL-7621
Mathematics and
Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

GEDANKEN: A Simple Typeless Language
Which Permits Functional Data Structures

and Coroutines

by

John C. Reynolds

Applied Mathematics Division

September 1969

TABLE OF CONTENTS

ABSTRACT

I. INTRODUCTION. , . , . , , . ,

II. AH INFORMAL DESCRIPTION OF GEDANKEN . .

The Universal Value Set , , , ,

Syntax. , , . . , , , .

Applicative Semantics of GEDANKEN . . , ,

Data Structures in Applicative GEDANKEN .

References. , ,

Data Structures with Imbedded References.

Implicit References , . , ,

Label Values. , , , .

Coroutines. , , . ,

Nondeterministic Algorithms

III. A FORMAL DEFINITION OF GEDANKEN

Abstract Syntax Definition. . , . . , , .

Abstract Syntax of GEDANKEN

Concrete Syntax of GEDANKEN

Translation into Abstract Form.

Semi-Basic Functions. , . . . , ,

The Interpreter

A Direct Interpreter.

IV, POSSIBLE EXTENSIONS AND MODIFICATIONS

Type Declarations , , . , .

Open Functions.

Label Value Difficulties.

APPENDIX: Basic Functions in GEDANKEN . .

ACKNOWLEDGMENTS, , , . , .

REFERENCES

GEDANKEN - A SIMPLE TYPELESS LANGUAGE WHICH PERMITS

FUNCTIONAL DATA STRUCTURES AND COROUTINES

by

John C. Reynolds

ABSTRACT

GEDANKEN is a simple, idealized programming language with the

following characteristics: (1) Any value which is permitted in some

context of the language is permissible in any other meaningful con

text. In particular, procedures and labels are permissible results

of functions and values of variables. (2) Assignment and indirect

addressing are formalized by introducing values, called references.

which in turn possess other values. The assignment operation always

affects the relation between some reference and its value. (3) All

compound data structures are treated as functions. (4) Type declara

tions are not permitted.

The functional approach to data structures and the use of refer

ences insure that any process which accepts some data structure will

accept any logically equivalent structure, regardless of its internal

representation. More generally, any data structure may be implicit,

i.e., it may be specified by giving an arbitrary algorithm for comput

ing or accessing its components. The existence of label variables

permits the construction of coroutines, quasi-parallel processes, and

other unorthodox control mechanisms.

A variety of programming examples illustrates the generality of

the language. Its simplicity is demonstrated by a concise formal

definition, in which abstract jjrograms are treated as GEDANKEN data

structures, and an interpreter for these structures is given in

GEDANKEN itself.

A portion of this material has been submitted to the ComnunioaHons

of the ACM,

I. INTRODUCTION

Even a cursory acquaintance with modern programming languages suggests

that the simultaneous achievement of simplicity and genera i y m

hi^n, This paper describes a simple
design is a serious unsolved research problem, inis p î

11 =,1 rFDANKEN. which has developed out of
and somewhat idealized language, called GEDAWKtiM,

an attempt to attack this problem.

It must be emphasized that GEDANKEN is not intended to be a generally

useful programming language, although it could be effective in situations

where a fair degree of object program inefficiency is tolerable. Its major

purpose is to illustrate two basic principles which the author believes may

be valid for the design of more complex and practical languages. This motiva=

tion is reflected in its name, which is meant as an analogy to gedanken experi=

ments in physics.

The two principles underlying the design of GEDANKEN are the following:

(1) Completeness. Any value which is permitted in some context of the

language is permissible in any other meaningful context. In particularg pro

cedures and labels are permitted to be results of functions or values of

references (e.g., variables), without imposing restrictions in order to main

tain a stack discipline for run-time storage allocation.

(2) The Reference Concept. To formalize the mechanisms of indirect

addressing and assignment, a concept of reference is introduced which is

somewhat similar to that used in the Amsterdam proposal for ALGOL 68,

Specifically, among the possible values which may occur in a GEDANKEN program

are objects called references, which in turn possess other values. The assign

ment operation always affects the relation between some reference and its

value.

We will show that these design principles have the following consequences"

(1) The existence of function-returning and reference-returning functions

allows all compound data structures to be treated as functions. Thus, for

example, a one-dimensional ALGOL-like array would be treated as a function

whose domain was a finite consecutive set of integers and which mapped each

element of this domain into a unique reference. This approach insures that any

process which accepts some data structure will accept any logically equivalent

structure, regardless of its internal representation. More generally, any

data structure may be implicit, i.e., it may be specified by giving an arbitrary

algorithm for computing or accessing its components.

(2) The existence of label variables permits the construction of co

routines, quasi-parallel processes, and other unorthodox control mechanisms.

This is a direct consequence of not imposing a stack discipline on the program

control information.

Some further design decisions have been made to achieve simplicity and

theoretical tractability at the expense of efficiency and practicality. In

particular:

(1) Declarations are not allowed to, restrict the value range of iden

tifiers, references, or function results. Languages with this property are

usually called "typeless." although the types of values may be tested during

execution.

(2) GEDANKEN does not provide a variety of common features which enhance

the conciseness of a language without expanding the range of programs which can

be expressed. Thus for example, infix arithmetic operators, for statements,

and factored declarations are not provided.

(3) For brevity, floating-point values and operations have been omitted

from the version of GEDANKEN described in this paper.

Items (2) and (3) are not conceptually serious deficiencies, since they

can be overcome by extending the language in an obvious and well-understood

•̂ .m (1) is indicative of a serious theoretical probl̂ r̂ ^
manner. However, item ^l) is mu ^ ^^^

. 1 facility for type declaration which will permit concis
how to develop a facility roi •-yf

.ntations without destroying the generality of the
efficient data representations wii.

language. , jr T
, u^^r. i-nfluenced by a nuinber of earlier

The design of GEDANKEN has obviously been influence

. . (2) TTcjp '•^'> EULER/'^^ and ALGOL 68.^ There
languages. Including ALGOL 60. LISP. EULER.

is also an unusually close relation between GEDANKEN and the language PAL.

described by A. Evans.̂ ^̂ The similarities of these languages are largely the

result of convergent independent evolution, but the existence of sequence

expressions and their use in treating all functions as functions of a single

variable are direct borrowings from PAL, (However, PAL does not treat sequences

as special cases of functions, nor does it utilize the reference concept,)

In the sequel, we give both an informal description of GEDANKEN and a

formal definition. The generality of the language will be demonstrated by a

variety of examples; its simplicity is evident from the conciseness of the

formal definition.

II, AN INFORMAL DESCRIPTION OF GEDANKEN

The Universal Value Set

The principle of completeness and the absence of type declarations in

GEDANKEN implies that the values of all identifiers and references, as well

as the results of all functions, may range freely over a single universal set.

This set contains the following types of data;

Primitive Data: Integers, Booleans, Characters, Atoms

Nonprimitive Data; Functions, References, Label values

A complete set of basic predicate functions is available for testing the type

of a datum.

Among the primitive data only atoms are unusual. They are similar to atoms

in LISP, except that they lack property lists and print names. There is a basic

function ATOM which produces a new distinct atom each time it is executed, and

atoms may be tested for equality. Two particular atoms, denoted by the pre

defined identifiers LL and UL. play a special role in the language.

All functions accept a single argument and produce a single result, with

possible side effects. Proper procedures are treated as functions which exe

cute side effects but produce an irrelevant result. A number of basic functions

are provided which may be used without being defined (see Appendix); additional

user-defined functions are created by the evaluation of various expressions.

The functional approach to data structures gives special importance to

functions called vectors, whose domain is a finite set of consecutive integers.

Given a vector, it is useful to be able to determine the limits of its domain.

In several languages. these limits are obtained by applying certain basic func

tions to the vectors, but this approach destroys the pure functionality of the

vectors. Thus in GEDANKEN. the limits are obtained by applying the vector to

two special arguments, the atoms LL and Û ,.

More precisely, a function F is called a vector if: (1) Its domain (the

set of arguments for which the function terminates without an error stop)

includes the atoms LL and UL. (2) The values of F(LL) and F(UL) are integers

such that F(UL) > F(LL) - 1, (3) The domain Includes all integers I such that

F(LL) s I < F(UL),

If F is a vector, then the integer F(UL) - F(LL) + 1 is called the

length of F, and, for each F(LL) s I i F(UL). the value of F(I) is called the

Ith component of F. If F is a vector and F(LL) = 1 then F is called a sequence.

It should be emphasized that any function satisfying the above definition

is a legitimate vector, regardless of the method by which it computes its

10

,•= nn basic predicate function whi
components or limits. Indeed, there is no nasic f

•= ^ vector, since such a predicate w°"
• tests whether an arbitrary function is

.K lanmiage provides certain operations whose
be noncomputable. However, the language P

result will always be a vector which does not cause side effects,

sequences are used to reduce functions of several arguments to functions

of a single argument. Thus a function of k arguments is treated as a function

of a single argument that is a sequence of length k.

References and label values will be discussed later.

Syntax

A GEDANKEN program is a sequence of tokens separated by zero or more

blanks, with at least one blank used as a separator whenever the juxtaposition

of two tokens would otherwise be ambiguous. The tokens themselves are sequences

of characters classified as follows:

Constants: digit strings (denoting Integers), quoted strings

Reserved Words: AND. OR. IF, THEN, ELSE, CASE, OF, IS, ISR

Identifiers: All other alphanumeric strings beginning with a letter

Punctuation Tokens; ̂ , = : () ; :=

Certain identifiers, called predefined, have standard meanings. These

include TRUE, FALSE, LL, UL, and QUOTECHAR, which denote fixed items of primi

tive data; ERROR, which denotes a basic label value causing program termination;

and the names of all basic functions. The meanings of predefined identifiers,

but not reserved words, may be overridden by declarations.

The syntax of GEDANKEN is specified by a context-free grammar over an

infinite vocabulary of tokens rather than a finite vocabulary of characters

We state this grammar in an extension of BNF in which the notation {a}* ig used

to indicate an arbitrary number (including zero) of occurrences of the 1- "

11

<exp > ::= <constant> | <identifier> | (<block>)

<exp.> ::= <exp > | <function designator>

<function designator> ::= <exp><exp >

<exp2> ::= <exp^> | <exp^> = <exp >

<exp-> ::= <exp > | <exp > AND <exp >

<exp^> ::= <exp > | <exp > OR <exp >

<exp > ::= <exp > | <conditional exp> | <lambda exp> | <exp > := <exp >

<conditional exp> ::= IF <exp-> THEN <exp,> ELSE <exp,>
b 6 D

<lambda exp> ::= \ <pform ><exp >

<exp > ::= <expg> | <sequence exp> | <case exp>

<sequence exp> ::= <empty> | <exp >. <exp > {. <exp.>}*

<case exp> ::= CASE <exp > OF <exp > {. <exp >}*

<pform > ::= <identifier> | (<pform >)

<pforra > ::= <pform > | <sequence pform>

<sequence pform> ::= <empty> | <pform >. <pform > {. <pform>}*

<decl> :;= <pform > IS <exp.>
1 6

<recurslve decl> ::= <identifier> ISR <lanbda exp>

<label> ::= <identifier> :

<statement> ::= {<label>}* <exp->
D

<block> ::= {<decl>;}* {<recursive decl>;}* {<statement>;)* <statement>

<prograra> ::= <block>

Phrases of the classes exp , exp are all called expressions; the

subscripts serve only to distinguish levels of precedence. Similarly both

pform and pform are called parameter forms. It should be noted that a

block can consist of a single expression, so that any expression can be

parenthesized (without changing its semantics).

12

Appl ica t ive Semantics of GEDANKEN .
(5) , i , i d e the semantics of GEDANKEN i n t o an appl ca -

Following Evans, we divide tne
1 . -on of expressions and the c r e a t i o n and

f ive p a r t , involving the evaluation of expre
„,v,i- involving r e f e r e n c e s ,

app l i ca t ion of funct ions , and an imperative p a r t ,

,, • „n . We f i r s t consider the a p p l i c a t i v e p a r t ,
assignments, l a b e l s , and :uraps. We r i r ^

which i s a complete and n o n t r i v i a l language in i t s e l f .

The appl ica t ion of a function to an argument i s performed by e v a l u a t i n g

a function designator:

<function designator> ::= ^^^^ I f ! ^
funct ion argument

p a r t p a r t

Such an expression i s evalua ted by f i r s t e v a l u a t i n g i t s funct ion p a r t and i t s

argument par t t o obtain values v (which must be a func t ion) and v^, and then

applying the function v . t o the argument v , t a k i n g the r e s u l t of v^ t o be the

value of the function d e s i g n a t o r .

The syntax allows the usual composition of func t ions t o be w r i t t e n without

pa ren theses . e , g , , SIN(SQRT(X)) may be w r i t t e n as SIN SQRT X, On the o the r

hand, parentheses are needed to apply a funct ion which i s the r e s u l t of another

func t ion , e . g . , (X 3) 4 causes the funct ion X t o be app l i ed t o 3 and then the

r e s u l t of X to be app l ied t o 4.

Functions are c rea ted by e v a l u a t i n g lambda e x p r e s s i o n s ;

<lambda exp> : := X <pform > <exp >

body

For the moment we limit ourselves to the case where the parameter form is a

single identifier. Then the value of a lambda expression is the function

whose result is obtained by evaluating the body after binding the (identifier

which is the) parameter form to the argument of the function, XQ comolet

13

this definition we must specify the binding of any free identifiers which occur

in the body but not in the parameter form. Such identifiers are bound to the

values which they possess when the lambda expression is evaluated (which may

not be the same as their values later when the resulting function is applied).

This type of binding is called FUNARG binding in LISP and is similar to the

binding of free identifiers in ALGOL.

Functions which are sequences may also be created by evaluating sequence

expressions:

<sequence exp> ::= <empty> | <exp > , <exp.> {, <exp >}*

Let n be the number of subexpressions. Then the sequence expression is

evaluated by first evaluating its subexpressions to obtain values v , ... , v

and then creating a sequence of length n whose ith component (for 1 ^ i - n)

is V.,
1

Because of their low precedence, sequence expressions are often parenthe

sized, but the parentheses themselves do not indicate the construction of a

sequence. Thus the expressions () and (X, Y) both create sequences, but (X)

has the same value as X. There is no sequence expression which produces a

sequence of length one, but such sequences can be produced by the basic function

UNITSEQ, which returns a sequence whose only component is the value of its

argument.

As noted earlier, a function of n variables (n i 1) is treated in GEDANKEN

as a function of a sequence of length n. However, the syntax is arranged to

preserve conventional notation. Thus, for example, ADD(X, Y) has its usual

effect, but this effect is achieved by creating a sequence out of the values

of X and Y and then giving this sequence to ADD as its single argument.

lU
^ j , expression

V * h»n a function created by a lambda
This situation suggests that when a run ^ ^^^

,, its argument, the parameter form within
expects to receive a sequence as its =^6

>,-n̂ several different identifiers to the
lambda expression should be able to Dina

such a capability is provided by sequence parameter
components of the sequence. Sucn a i-'^y

forms;

<sequence pform> ::= <e-npty> I <pform„>, <pform„> (. <Pf°-o>>*

In general, if a is any value and p is any parameter form, then the binding of

p to a is defined recursively as follows:

(1) If p is an identifier, then p is bound to a.

(2) If P has the form (p'), then p' is bound to a.

(3) If p is a sequence parameter form, p^^, ... , P^^^ ^ i)» ''̂ en a,

which must be a function, is applied to each integer from 1 to n,

and each p. is bound to the value of a(i),
1

The combined syntax of sequence expressions and sequence parameter forms

is designed to preserved conventional notation for functions of several

arguments. Thus in the evaluation of (X(X, Y) body)(3, 4) , X is bound to 3

and Y is bound to 4. However, the sequence argument approach also provides

useful unconventional capabilities, e.g., (X(X, Y) body)(IF P THEN (3, 4)

ELSE (5, 6)). More Importantly, the ability to bind a single identifier to

an entire sequence provides the equivalent of a function with an indefinite

number of arguments, e,g., (XX body)(IF P THEN (3, 4) ELSE (5, 6. 7)),

(4)

GEDANKEN is similar to EULER in treating all types of unlabelled state

ments as expressions (some of which are evaluated for their side effects rather

than their values). In particular, a (parenthesized) block is a type of

expression with a meaningful value:

<block> ::= {<decl>;l" {<recursive decl>;}* {<statement>;)* <statem

15

It is evaluated by first carrying out the bindings indicated by its declara

tions, recursive declarations, and labels, and then evaluating the statements

in order from left to right. If no jumps out of the block occur, the value

of the block is the value of the rightmost statement (the values of preceding

statements are ignored).

A declaration:

<decl> ::= <pform > IS <exp^>
1 6

is executed by evaluating the expression on its right and then binding the

parameter form to the value of this expression, A sequence of declarations

is executed from left to right, so that the expression in each declaration

"feels" only the bindings caused by preceding declarations on the left.

Unfortunately, since a declaration does not bind its own right side, it

cannot be used easily to define a recursive function. Thus for example,

FACT IS XN IF N = 0 THEN 1 ELSE MULTIPLY(N, FACT SUBTRACT(N,1))

does not define a recursive function since the occurrence of FACT on the right

side is not bound to the value of the lambda expression containing it. To

overcome this problem, recursive declarati'ons are provided:

<recursive decl> ::= <identifier> ISR <lambda exp>

A recursive declaration binds the identifier on its left to the value of the

lambda expression on its right, but in computing this value, the free identi

fiers in the lambda expression are not bound to their values at the time the

lambda expression is evaluated. Instead, these free identifiers are bound to

their values after all bindings (including label bindings) in the block con

taining the recursive declaration have been completed. This allows the use of

several recursive declarations to define a family of recursive functions which

call each other. It also allows a recursive function to jump to some statement

in the block in which it is defined.

16

™= mpanine as in ALGOL. A case
Condit ional expressions have the same meaning

e i s executed by f i r s t e v a l u a t -
expression of the form CASE e^ OF e^ ,̂ .«• » n

• ^ • • =n i-nteger s a t i s f y i n g 1 ^ i ^ n . the
ing e„ t o obtain a value i ; i f i ^s an in teger

• • obtained by eva lua t ing e ; i f i i s LL or UL
r e s u l t of the case expression is obtained cy i

1 o= nf i eive an e r r o r . The remaining
the r e s u l t i s 1 or n ; a l l other values of i give

,11 be regarded as abbrev ia t ions (except fo r coe rc ion) :
forms of expressions can a l l be regaiuc

e = e =S> EQUAL(eĵ , e^)

e AND e ^ ^ ^ d F e^ THEN e^ ELSE FALSE)

e OR e ^ ' (X F ê ^ THEN TRUE ELSE e^)

e^ := e 2 = > S E T (e ^ , e^)

where EQUAL denotes a bas ic e q u a l i t y funct ion and SET denotes a b a s i c a s s i g n

ment function (to be defined l a t e r) . EQUAL t e s t s the e q u a l i t y of p r i m i t i v e

da ta , but i f e i t h e r component of i t s argument i s a funct ion or a l a b e l , i t

w i l l r e tu rn FALSE, I t s ac t ion on re fe rences w i l l be desc r ibed l a t e r .

The meaning of constant tokens which a r e quoted s t r i n g s r e q u i r e s some

explanat ion, A s i n g l e quoted c h a r a c t e r denotes the corresponding p r i m i t i v e

datum, but a s t r i n g of any o the r length denotes a sequence whose components

a r e the cha rac t e r s of the s t r i n g (with quo ta t ion marks d e l e t e d) .

Data S t ruc tu res in Appl ica t ive GEDANKEN

Even the a p p l i c a t i v e p a r t of GEDANKEN i s s u f f i c i e n t t o demonstrate the

power and f l e x i b i l i t y which a re obta ined by t r e a t i n g compound da ta s t r u c t u r e s

as func t ions .

As a f i r s t example, consider LISP-l ike l i s t s t r u c t u r e s . We wish t o define

funct ions in GEDANKEN which are equ iva len t t o the LISP funct ions CONS CAR

and CDR. The two-f ie ld l i s t c e l l produced by CONS can be considered t o be

a function whose domain conta ins two elements (e . g . . 1 and 2) and which

17

these elements into the values of its CAR and CDR fields. This viewpoint leads

directly to the definitions:

CONS IS X(X. Y) XZ IF Z = 1 THEN X ELSE Y;

CAR IS XX X 1;

CDR IS XX X 2;

These definitions imply an ability to do list processing without the use

of special basic functions. In a conventional language (e.g., compiled

LISP 1.5 or various extensions of ALGOL ') user-defined functions are

restricted so that storage for the values of their identifiers obeys a stack

discipline. In this situation list structures, which do not obey a stack

discipline, must be allocated in a separate storage area, and basic functions

or operations must be provided for accessing this area. But in GEDANKEN, the

user may develop list-processing by defining function-returning functions (such

as CONS above) which violate a stack discipline. In effect, all storage is

potentially list-structured.

Although the above approach is workable and theoretically attractive, it

is more convenient to use sequence expressions to create list elements, i.e.,

to write (X, Y) instead of CONS(X, Y) , X 1 instead of CAR X, and X 2 instead

of CDR X, Following this approach, we introduce lists into GEDANKEN by first

creating an atom to denote the empty list:

NIL IS ATOMO;

and then defining a list to be either the atom NIL or a sequence of length

two whose second component is a list. Then the following functions will

produce the length of a list, find the ith element of a list, and append one

list to another:

18

r ^ , HTT THEN 0 ELSE INC LISTLENGTH L 2 ;
LISTLENGTH ISR XL I F L = NIL THLN

LISTELEM ISR X (I , L) I F L = NIL THEN GOTO ERROR

E L S E I F I = 1 T H E N L 1 E L S E L I S T E L E M (D E C I . L 2) ;

c. U. Y W F X = NIL THEN Y ELSE (X 1. APPEND(X 2. Y));
APPEND ISR X(X. Y) li X m ^

1,,-̂v, increase or decrease an integer
Here INC and DEC are basic functions which increase

by one.

AS a second example, we consider one-dimensional arrays. We have already

defined a type of function called a vector which is the analogue of a one-

dimensional array, and we have introduced sequence expressions for creating

vectors. But a sequence expression can only produce a vector which is a

sequence, and it is inconvenient for producing very long vectors. What is

needed is a function which will produce a vector from a functional specifica

tion of its components.

Thus we wish to define a function, called VECTOR, which will accept

another function, tabulate its values over a finite range, and return a lookup

function for the resulting table. More precisely, VECTOR accepts an argument

(L, U, F), where L and U are integers and F is a function. If U < L, VECTOR

produces an empty vector V such that V(LL) = L and V(UL) = L - 1, Otherwise,

VECTOR evaluates F(I) for each integer I between L and U inclusive, and pro

duces a vector V such that V(LL) = L, V(UL) = U and for L ^ I - U, V(I) is

the value of F(I), The following definition meets this specification:

VECTOR ISR X(L, U, F)

IF GREATER(L, U) THEN

X I IF I = LL THEN L ELSE IF I = UL THEN DEC L ELSE GOTO ERROR

ELSE (V IS VECTOR(L, DEC U, F); T IS F U;

X I IF I = UL THEN UELSE IF I = U THEN T ELSE V I) ;

19

It is evident that this function, although theoretically correct, will

be extremely inefficient in any reasonable implementation. For this reason,

a basic function VECTOR is provided which is defined to be equivalent to the

function above (except for coercion).

To clarify this question of efficiency it is necessary to consider possible

implementations of GEDANKEN, without going into unnecessary detail. In a simple

implementation, functions will possess two distinct internal representations:

If a function is created by evaluating a lambda expression, it will be repre

sented by a "lambda record" containing a pointer to code which was compiled

from the lambda expression, plus values for each free identifier in the lambda

expression. On the other hand, if a function is created by evaluating a

sequence expression or by the application of VECTOR, it will be represented

by a "vector record" containing range limit and indexing information, plus a

contiguous array of component values (or perhaps a pointer to such an array).

It is evident that the above definition of VECTOR (as opposed to the basic

function) would yield a vector whose internal representation was a linked list

of lambda records (each containing one component value) rather than a contiguous

array,

We may now Illustrate our assertion that any process which accepts some

data structure will accept any logically equivalent structure. Suppose that

P is a function which expects a sequence as its argument, and that we wish to

give it a sequence whose ith component is the ith element of a list L. This

can be done in a conventional manner by evaluating P VECTORd, LISTLENGTH L,

X I LISTELEMd, D) , which copies the elements of L into a contiguous array.

But it is also possible to evaluate P MAKESEQFROHLIST L, where

MAKESEQFROMLIST IS X L

X I IF I = LL THEN 1 ELSE IF I = UL THEN LISTLENGTH L ELSE LISTELEMd, L);

20

MAKESEQFROHLIST does n o t copy t h e components o f L ; i n s t e a d , i t p r o d u c e s ^
r- T ^^rh t i m e

^-he, a n n r o o r i a t e e l e m e n t o f L eaci-
i m p l i c i t s e q u e n c e which w i l l look up t h e a p p r o p r i a

one of i t s components i s a c c e s s e d .

I t i s e q u a l l y p o s s i b l e t o p r o d u c e an i m p l i c i t l i s t f rom a s e q u e n c e :

HAKELISTFROMSEQ ISR X S M L F S l d , S) ;

MLFSl ISR X d , S) IF GREATERd, S UL) THEN NIL

ELSE X K (CASE K O F S I , HLFSKINC I , S)) ;

(Here MLFSl i s a s u b s i d i a r y f u n c t i o n which p r o d u c e s an i m p l i c i t l i s t f rom t h e

subsequence of S t h a t b e g i n s w i t h t h e I t h c o m p o n e n t ,)

So f a r , t h e d a t a s t r u c t u r e s we have shown a l l h a v e t h e l i m i t a t i o n t h a t

once a s t r u c t u r e has been c r e a t e d , i t s componen t s o r e l e m e n t s c a n n o t b e

a l t e r e d . To overcome t h i s l i m i t a t i o n we mus t i n t r o d u c e t h e i m p e r a t i v e a s p e c t s

of GEDANKEN.

R e f e r e n c e s

I t i s w e l l known t h a t t h e i n t r o d u c t i o n o f a s s i g n m e n t i n t o an a p p l i c a t i v e

l a n g u a g e r e q u i r e s a c a r e f u l d i s t i n c t i o n b e t w e e n v a l u e s and o b j e c t s w h i c h

p o s s e s s v a l u e s (v a r i o u s l y c a l l e d a d d r e s s e s , p o i n t e r s , r e f e r e n c e s , o r n a m e s) .

I n GEDANKEN we h a v e c h o s e n t o f o r m a l i z e t h i s d i s t i n c t i o n by i n t r o d u c i n g a

c o n c e p t of a r e f e r e n c e wh ich i s r a t h e r s i m i l a r t o t h a t u s e d i n ALGOL 6 8 .

I t i s n o t c l e a r t h a t t h i s i s t h e b e s t a p p r o a c h , b u t i t i s f l e x i b l e and c o n

c e p t u a l l y s i m p l e , and i t combines c l e a n l y w i t h t h e p r i n c i p l e o f c o m p l e t e n e s s .

In a p p l i c a t i v e GEDANKEN t h e o n l y e n t i t i e s w h i c h p o s s e s s v a l u e s a r e

i d e n t i f i e r s ; an i d e n t i f i e r i s s a i d t o be bound t o i t s v a l u e . I t w o u l d b e

p o s s i b l e t o d e f i n e a s s i g n m e n t a s an o p e r a t i o n w h i c h c h a n g e s t h e b i n d i n g o f

an i d e n t i f i e r , b u t t h i s would d e s t r o y t h e " n e s t i n g " p r o p e r t y o f b i n d i n g .

M o r e o v e r , i f a s s i g n m e n t i s c o n s i d e r e d a s a f u n c t i o n (w i t h s i d e e f f e c t s) t h e n

21

the principle of completeness would be violated, since an identifier would be

a possible argument for the assignment function but would not be a permissible

value in any other context.

Thus we introduce a second type of entity, called a reference, which

possesses a value. But unlike an identifier, a reference can also be a value,

possessed by either an identifier or a reference. The assignment operation is

then defined to alter the relation between a reference and its value rather

than an identifier and its value.

Basically, references are manipulated by three basic functions: REF, SET,

and VAL, REF X returns a new distinct reference which is initialized to

possess the value X. SET(R, X) (which can be abbreviated R := X) causes R

(which must be a reference) to possess the value X and then returns X. VAL R

returns the value possessed by R (which must be a reference).

The following illustrates the reference concept: Under the scope of the

declaration X IS 3, the identifier X Is bound to the integer 3, and this bind

ing cannot be altered by assignment. Indeed, evaluation of the expression

X := 4 would give an error, since 3 is not,a reference. Analogously, under

the scope of the declaration X IS REF 3, the identifier X is bound to the

reference created by REF, and this binding cannot be changed by assignment.

But now evaluation of X := 4 is legitimate, and causes the value possessed by

the reference bound to X to change from 3 to 4, Thus, in the execution of

the block

(X IS REF 3; VAL X = 3; X := 4; VAL X = 4)

both equality predicates will be true.

The major difficulty with references is the frequent necessity for using

the function VAL. Thus under the scope of the declarations X IS REF 3;

22

..̂ T /̂„Ar Y VAL Y) r a t h e r than ADD(X, Y), s ince AD
Y IS REF 4; one must wri te ADD(VAL X, VAL i ; ra

To a l l e v i a t e t h i s d i f f i c u l t y , we
a c t s upon in tegers r a t h e r than re fe rences .

u-.h r-oferences a re a u t o m a t i c a l l y replaced
adopt a coercion convention, in which references a

• h i .h thev would otherwise be meaningless,
by their values in contexts in which they wouia

Spec i f i ca l l y , we define the function

COERCE ISR X X IF ISREF X THEN COERCE VAL X ELSE X;

(which i s avai lable as a bas ic func t ion) , and define the phrase " t o coerce X"

to mean the replacement of X by COERCE X. Then the fo l lowing convent ions

are es tab l i shed:

(1) All bas ic functions which would otherwise be meaningless coerce

t he i r argument or the appropr ia te components of t h e i r arguments . For example,

ADD(X, Y) i s equivalent to ADD(COERCE X, COERCE Y), bu t ISREF X i s not

equivalent to ISREF COERCE X, nor VAL X t o VAL COERCE X.

(2) REF X coerces X, SET(R, X) (and t he r e fo r e R := X) coerces X, and

EQUAL(X, Y) (and therefore X = Y) coerces both X and Y. Since t he se funct ions

would each be meaningful for r e fe rences without c o e r c i o n , analogous noncoercing

func t ions , named NCREF, NCSET, and NCEQUAL, a re a l s o p rov ided . NCREF and

NCSET permit re ferences t o possess values which a re a l s o r e f e r e n c e s , (Note

t h a t COERCE NCSET(R, R) never t e r m i n a t e s ,) NCEQUAL can be used t o determine

whether two values are the same r e f e r e n c e ,

(3) Condi t ional and case express ions coerce the values of t h e i r lef tmost

subexpress ions ,

(4) Expressions involving AND and OR coerce the values of both of

t h e i r subexpress ions ,

(5) A function des igna tor coerces the value of i t s funct ion p a r t .

(6) When a sequence parameter form p , . . . , p i s bound to a va lue

each p . w i l l be bound to (COERCE a) (i) .

23

(7) Vectors which are created by evaluating sequence expressions or by

application of the basic functions VECTOR or UNITSEQ will coerce their

argument,

Data Structures with Imbedded References

The utility of the reference concept becomes apparent when reference-

returning functions are used to imbed references within data structures,

yielding structures which can be altered by assignment.

This approach provides precise control over the ways in which data

structures can be altered. Thus the GEDANKEN equivalent of an ALGOL-like

one-dimensional array is a vector whose components are references, e.g.,

X IS VECTORd, 100, X I REF 0);

Under the scope of this declaration, assignment can be made to the components

of X, e.g., X(7) := 10, but not to X itself. In particular, the subscript

limits X LL and X UL are fixed by the declaration.

On the other hand, the equivalent of a string variable is provided by a

reference whose value is a vector:

S IS REF VECTORd, 100, F); .

Here assignment can be made to S itself (possibly changing the subscript

limits) but not to the components.

A second consequence of the reference concept is the ability to define

data structures or sets of data structures which share elements, in the sense

that assignment to one element will affect another. Suppose we wish to define

a square matrix M, We could define M as a vector of vectors, i,e.,

M IS VECTORd, 10, X I VECTORd, 10, X J REF 0));

but this leads to the inconvenience of referring to an element of M by (M I) J,

2i»

4r„„.>r,̂ p̂ returning function of pairs
It is more natural to define M as a reference return B

of i n t e g e r s :

M IS(M1 IS VECTORd, 10. A I VECTORd. 10. X J REF 0)) ;

X d , J) (Ml I) J) ;

A I-O a^ MCI J) . Now cons ider the a d d i t i o n a l
so t h a t an element i s re fer red t o as MU, 'J i-

dec l a r a t i ons :

MT IS X d , J) M(J, I) ; MD IS X I M(I, I) ;

Here MT and MD denote the transpose and diagonal of M, in the sense t h a t

assignment to an element of one matrix a f f ec t s the corresponding elements of

the o the r s .

Elements may also be shared within the same data structure. For example,

S IS (SI IS VECTORd, 10, X I VECTORd, I, X J REF 0));

Xd, J) IF NOT GREATER(J, I) THEN (SI 1) J ELSE (SI J) I);

defines a symmetric matrix in which assignment to S(I, J) also alters S(J. I),

The imbedding of references in list structures also provides control over

the ways in which these structures may be altered. This is in contrast with

a language such as LISP, where one must choose between using a purely applica

tive language (pure LISP) in which list structures can never be altered, and

a language (full LISP 1,5) in which every field of every list cell can be

altered.

As an example, consider a property list, which is a list of property-

value pairs subject to two operations: The value paired with a given property

may be looked up, or the value paired with a given property may be changed,

adding a new pair to the list if the property is not already present. It is

evident that references must occur in the property list at two points; Each

value must be a reference, so that it can be changed, and the entire list must

be a reference, so that new pairs can be added.

25

The following function manipulates such property lists. Given a

property P and a (reference to a) property list L. PROPVAL(P. L) search L

for an occurrence of P. If P is found, the reference paired with P is

returned. Otherwise, a pair consisting of P and a new reference (initialized

to zero) is added to L, and the new reference is returned. The argument P is

coerced.

PROPVAL IS X(P, L)

(P IS COERCE P;

SEARCHL ISR X X

IF X = NIL THEN

(NEWV IS REF 0; L := ((P, NEWV), VAL L); NEWV)

ELSE IF (X 1) 1 = P THEN (X 1) 2 ELSE SEARCHL X 2;

SEARCHL VAL L);

A call of this function can occur on either side of an assignment operation;

on the right side it will act to look up a value, on the left side it will

act to alter a value.

A further step can be taken by viewing the property list itself as a

reference-returning function which accepts a property and produces a reference

to the corresponding value. The following function (of no arguments) creates

such functional property lists:

MAKEPROPLIST IS X() (L IS REF NIL; X P PROPVAL(P, L));

Essentially, each execution of MAKEPROPLIST creates a new instance of PROPVAL,

with L bound to a private "own variable." Since a property can be any primi

tive datum, a functional property list is similar to a reference-valued vector,

except that it has an indefinite domain. Indeed, functional property lists can

be used to provide an efficient implementation of sparse vectors.

26

f ^of»rences. suppose that READ is a As a final example of the use of references, supp

function such that each execution of READ produces the next item of data from

some input stream, and that we wish to produce an implicit list of the succes-

^ ,, •.,„ f.mction (of no arguments) produces
sive items in the stream. The following function lo

such a list:

MAKERLIST ISR X()

(B IS REF 0 ; X I

(IF B = 0 THEN B := (R E A D O . M A K E R L I S T O) ELSE (); B I));

The result of MAKERLIST is an implicit list (whose implicit length is infinite)

which only calls READ as items of data are actually needed, and only stores

previously read items which are still accessible.

Implicit References

The utility of implicit data structures suggests the introduction of an

analogous facility for references. Thus we extend the concept of a reference

to include an implicit reference, which may carry out an arbitrary computation

each time it is set or evaluated.

An implicit reference is created by executing the basic function

IMPREF(SETF, VALF). where SETF and VALF must be functions of one and zero

arguments respectively. Each execution of IMPREF creates a distinct implicit

reference, and these implicit references satisfy the predicate ISREF and are

coerced in the same manner as conventional references. But the effect of SET

or VAL on an implicit reference is to execute SETF or VALF, Specifically, if

R is the result of IMPREF(SETF. VALF) then

NCSET(R. X) = (SETF X; X)

SET(R, X) = (X IS COERCE X; SETF X; X)

VAL R = VALF ()

27

To illustrate the use of implicit references, we consider the problem of

protecting a reference-valued vector. Suppose that P is a function which

accepts a vector whose components are references. We wish to apply P to

such a vector V, but to protect the components of V from being affected by

P. i.e.. we want these components to revert to their original values after

the execution of P is finished. The simplest approach is to copy V by execut

ing P VECTOR(V LL. V UL. X I REF V I), but this will be inefficient if V is

large and only a few components are reset by P. An alternative approach is

to maintain a "change list" of the components of V which have been altered

by P. This may be done by executing P PSEUDOCOPY V. where

PSEUDOCOPY IS X V

(CL IS REF NIL;

SEARCHCL ISR X(X. I, F, G) IF X = NIL THEN G()

ELSE IF (X 1) 1 = I THEN F (X 1) 2 ELSE SEARCHCL(X 2, I, F, G);

X I (I IS COERCE I;

IF I = LL THEN V LL ELSE IF I = UL THEN V UL

ELSE IF NOT ISINTEGER I OR GREATER(V LL, I) OR GREATERd. V UL)

THEN GOTO ERROR

ELSE IMPREF(

X X SEARCHCL(VAL CL. I. X R NCSET(R. X),

X() CL := ((I, NCREF X), VAL C D) ,

X() SEARCHCL(VAL CL. I, VAL. X() VAL V I))));

CL is a reference to the change list, which is a list of pairs, each containing

an integer argument of some altered component and a reference to the current

value of that component. SEARCHCL is a subsidiary function which searches a

change list X for a pair beginning with the integer I. If such a pair is found.

28

. . .,. ^-ha reference paired with I;
SEARCHCL returns the value of F applied to tne

. , is a function of no argu-
otherwise SEARCHCL returns the value of G, wtiic

. . • Mr^FT and NCREF are used to allow P to set
ments. The noncoercing functions NCSET ana "i-ra.

a component of V to a reference.

Label Values

. .,,.„..ii/r-M ,•= the label value. These values
The final type of data used in GEDANKEN is the laoei va

4= = Kiook containing labelled statements, and are
are created during execution of a block conxaximie

used as arguments to the basic function GOTO, which never returns but instead

causes a transfer of control to the computational state represented by the

label value.

During the execution of a block, immediately before the f i r s t statement of

the block is executed, each identifier that labels a statement in the block is

bound to a label value, which contains two items of information; the sequence

of statements beginning with the labelled statement, and the current status

of the computation. The informal notion of current status wi l l be made more

precise in the next chapter. For the present, we note that i t contains the

identifier bindings appropriate for executing statements in the block (includ

ing label bindings), plus a l l information necessary to complete the computation

after the block has exited. However, i t does not include the mapping of

references into their values.

Execution of the basic function GOTO, whose argument must be a label

value, causes the current status of the computation to be replaced by the status

stored in the label value, and then causes execution to continue with the s ta te

ment sequence stored in the label value.

As in ALGOL, this approach permits jumps within the same block or to

higher-level blocks. But the fact that label values can be possessed by

29

references or returned by functions provides additional capabilities, including

the ability to jump back into a block after it has been exited from. It is

this capability which allows the construction of coroutines.

Coroutines

A coroutine is a procedure which can relinquish control to its calling

program and later be reactivated to continue computation. The simplest situa

tion is that of two procedures, each of which treats the other as a subroutine.

As an example, suppose that COMPILE is a procedure which produces a

succession of data items called instructions, outputting each instruction by

applying a function OUT. and that ASSEMBLE is a procedure which accepts a

succession of instructions, inputting each instruction by applying a function

IN. If OUT and IN are arguments to COMPILE and ASSEMBLE respectively, we have

COMPILE ISR X OUT (... OUT X .,,);

ASSEMBLE ISR X IN (... X ;= IN() ...);

We now want to couple these procedures so that ASSEMBLE receives the

output of COMPILE, Specifically, we want to run ASSEMBLE until it requests

input, then run COMPILE until it produces the required output, then run

ASSEMBLE again, etc. The necessary program can be written by using label-

valued references which are global to both IN and OUT;

(LC IS REF 0; LA IS REF 0; INST IS REF 0;

LC := LCI; ASSEMBLE(X() (LA := LAI; GOTO LC; LAI; VAL INST)); GOTO DONE;

LCI: COMPILE (X X (LC := LC2; INST := X; GOTO LA; LC2:)); GOTO ERROR;

DONE:)J

Here LA and LC are label-valued references saving the current states of ASSEMBLE

and COMPILE, and INST is a third reference used to hold the instruction being

transmitted from COMPILE to ASSEMBLE. If COMPILE finishes while ASSEMBLE is

still waiting for another instruction, an error stop occurs.

30

Label values in GEDANKEN are c losely r e l a t e d t o "p rocesses" in s imu la t ion

languages such as SIMULA;̂ ^> both are mechanisms which allow the s t a t e of a

•1- m of data The e s s e n t i a l d i f f e r e n c e
suspended computation to be saved as an item

i s t h a t fu r the r execution of a computation which was saved as a p rocess causes

J U-, ft,ri-hpr execution of a computation saved as a the process t o be updated, while fur ther execuT;iu.

u,-,„«.i Thnd l abe l va lues can be used l abe l value leaves the label value unchanged. Thus l a o e i vaiu

t o repeatedly i n i t i a t e execution from the same s t a t e .

This capab i l i ty can be used to program a mode of execut ion for nonde t e r

min i s t i c algorithms^^^ in which a l t e r n a t i v e paths are pursued c o n c u r r e n t l y .

A simple example i s nondeterminist ic p a r s i n g . I t i s f a i r l y s t r a i g h t f o r w a r d

to convert a context-free grammar in to a r ecu r s ive pa r s ing f u n c t i o n . Unfor

tuna te ly , for many grammars t h i s function w i l l conta in n o n d e t e r m i n i s t i c

branches, i . e . , points a t which a cond i t iona l branch must be performed

although the current s t a t e of the parse i s i n s u f f i c i e n t t o determine t h i s

branch.

When nondeterminist ic branches occur , pa r s ing can be accomplished by

simulating a f i n i t e se t of independent p a r s e r s , a l l accep t ing the same input

s t r ing and obeying the same program, but with d i f f e r e n t c o n t r o l s t a t e s . When

a parser encounters a nonde te rmin is t i c branch, i t expands i n t o two s e p a r a t e

pa r se r s ; when a pa r se r reads an input c h a r a c t e r which i s i n c o n s i s t e n t with

i t s cont ro l s t a t e , i t i s d e l e t e d .

Spec i f i ca l l y , we assume t h a t PARSE (IN, AMB. FAIL) i s a funct ion which

accepts two functions IN and AMB, and a l a b e l value FAIL, and r e t u r n s some

representat ion of a successfu l p a r s e . The funct ion IN, of no arguments , i s

called by PARSE to read each c h a r a c t e r of the input s t r i n g . The func t ion

31

AMB, whose argument is a label value, is called to execute a nondeterministic

branch; one side of the branch returns from AMB while the other jumps to the

label-valued argument. PARSE jumps to the label value FAIL when it encounters

an inconsistent character. We assume that PARSE does not set any references,

or at least that it does not expect the value of any reference to be pre

served across a call of IN or AMB,

The following program carries out the concurrent execution of PARSE,

synchronizing the independent parsers by their reading of characters:

(C IS REF NIL; W IS REF NIL; R IS REF NIL; CHAR IS REF NIL;

C := (PARSE(X() (W := (Ll. VAL W); GOTO CONT; Ll: VAL CHAR),

X L2 (R := (L2, VAL R)), CONT).

VAL C);

CONT: IF R = NIL AND W = NIL THEN GOTO DONE

ELSE IF R = NIL THEN (CHAR := READCHAR(); R := W; W := NIL)

ELSE ();

(L IS R 1; R := R 2; GOTO L);

DONE: VAL C)

Each independent parser is represented by a label value if it has not completed

its parse, or by its result if it has completed its parse. The finite set of

parsers is maintained by the values of the references C. W. and R. C gives a

list of the results of completed parses, W gives a list of label values repre

senting the parsers which are waiting for the next character, and R gives a

similar list for the parsers which are ready for execution before reading the

next character. The reference CHAR keeps track of the current character, and

is updated by the basic function READCHAR, The label CONT is reached whenever

execution is to be switched from one parser to another. The final value of the

32

u -rinnt S t r ing i s i l l - f o r m e d , w e l l -
block i s the l i s t of completed p a r s e s ; the mpuL

V, ^h»r t h i s l i s t has ze ro , one, or more
formed, or ambiguous depending upon whetner

than one element,
,.,= ;,^ t h a t used in t he COGENT

This approach to parsing i s ba s i ca l l y the same as t h a t

(9) ^ A h=r.p as an i l l u s t r a t i o n of t h e g e n e r a l i t y
programming system. ^^^ I t i s presented here as an i n

.=n+ s =;ienificant advance in the f i e l d of of GEDANKEN, but i t does not represent a s ign i r icd i

„=KiTr o f f i r i e n t for a l a r g e c l a s s of pars ing techniques . Although i t i s reasonably e f f i c i e n t r o r

, ^ i.===i- i f the function PARSE i s c a r e f u l l y c o n s t r u c t e d) , unambiguous grammars (a t l e a s t i r tne runt-LJ-""

•11 ^=„=o an exDonential growth in the number of ce r t a in ambiguous grammars w i l l cause an exponeii LIOI S
(10)

p a r s e r s , and are b e t t e r t r ea ted by other methods, such as t h a t of Ear l e y .

I I I . A FORMAL DEFINITION OF GEDANKEN

Our approach to the formal de f in i t i on of GEDANKEN i s based on the work

of the IBM Vienna group. which i s an extension of work by Landin and

McCarthy.'•'•^^ We w i l l define an a b s t r a c t syntax for GEDANKEN. show how t o

t r a n s l a t e concrete GEDANKEN programs i n t o a b s t r a c t programs which s a t i s f y

t h i s syntax, and then define the semantics of the language by g iv ing an

i n t e r p r e t e r which accepts ab s t r ac t programs. However, we w i l l d e v i a t e from

the Vienna approach in two p a r t i c u l a r s :

(1) A de f in i t e order of eva lua t ion w i l l be s p e c i f i e d for a l l ph rases

of abs t r ac t programs.

(2) Rather than in t roducing a s p e c i a l n o t a t i o n fo r a b s t r a c t programs or

the functions tha t manipulate them, we w i l l t r e a t a b s t r a c t programs as GEDANKEN

data s t r uc tu r e s and use GEDANKEN i t s e l f t o def ine the f u n c t i o n s . To minimize

the dangers of c i r c u l a r i t y inherent in t h i s approach, we w i l l avoid us ing

features of GEDANKEN which are novel or p o t e n t i a l l y ambiguous, such as l a b e l -

valued references or the imbedding of r e fe rences in da ta s t r u c t u r e s . O v e r a l l ,

s impl ic i ty and c l a r i t y w i l l be emphasized a t the expense of e f f i c i e n c y .

33

Abstract Syntax Definition

An abstract program will be a GEDANKEN data structure which is a combina

tion of sequences and records. In conventional languages. a record is a finite

collection of fields, each of which is identified by a field name. In GEDANKEN

we will use atoms as field names and consider a record to be a function whose

domain is a finite set of such atoms and which maps each atom into the corre

sponding field value.

Following Wirth and Hoare. we assume that the set of all records is

partitioned into a finite number of disjoint subsets called classes, and that

all records in the same class have the same set of fields. To insure this we

require that: (1) The domain of every record contains the atom TYPE.

(2) Each record maps TYPE into an atom called its class name. (3) If RI and

R2 are records such that RI TYPE = R2 TYPE, then RI and R2 have the same domain.

Moreover we assume that, for a particular field of records in a particular

class, the range of possible field values may be restricted. To describe such

restrictions we use an expression called a class definition, with the form:

<class deflnition> ::= •

(CLASS, <class name> {, (<field name>, <range descriptor>)}*)

where

<range descriptor> ::= <set name> | SEQ, <set name>

The class definition (CLASS, c, (f , r), ... , (f^, r^)) implies that for

every record R in class c (i.e., such that R TYPE = c): (1) The domain of

R is the set of atoms {TYPE, f , ... , f); (2) If r^ is a set name s, then

the value of R f. is a member of the set denoted by s; (3) If r^ has the form

SEQ, s, then the value of R f. is a sequence whose components are all members

of the set denoted by s.

34

, • . n i INTCLASS, BOOLCLASS. and
A set name may be any of the following: (1) INltLfl .

hoolpan values, and characters
CHARCLASS, denoting the sets of integers, boolean vaxu

respectively; (2) UNIVERSAL, denoting the universal value se

.,. (4) A union name, denoting the union of
name, denoting a class of records; (4J A unio

ThP meaning of union names is described by
sets denoted by other set names. The meaning OJ. U .

expressions called union definitions, with the form:

<union definition> ::= (UNION, <set name> {, <set name>}*)

The union definition (UNION, s„. s^, s„) implies that the set name s„

denotes the union of the sets denoted by s^, ... , s^. Circular union defini

tions, e.g., (UNION, X, X) are not permitted.

A collection of interrelated class and union definitions, defining various

record classes and other sets, is called an abstract syntax definition. As an

example, the following abstract syntax definition specifies a set of data

structures which might be used to represent algebraic expressions involving

addition and multiplication:

(CLASS, CONSTANT, (VALUE, INTCLASS)),

(CLASS, VARIABLE, (STRING, SEQ, CHARCLASS)),

(CLASS, SUM, (LEFT, EXP), (RIGHT, EXP)),

(CLASS, PRODUCT, (LEFT, EXP), (RIGHT, EXP)),

(UNION, EXP, CONSTANT, VARIABLE, SUM, PRODUCT)

Now suppose that d , ... , d is an abstract syntax definition, and that

each identifier in this definition has been declared to denote a distinct atom.

Then

D IS (d^, .,, , d^);

is a GEDANKEN declaration binding D to a data structure which is an encoding

of the abstract syntax definition. We now proceed to define GEDANKEN functions,

using the value of D, for creating records and testing set membership.

35

As a preliminary, we define the following generally useful functions

for manipulating sequences:

CONC IS X(X, Y) VECTORd, ADD(X UL, Y UL),

XI IF GREATERd, X UL) THEN Y SUBTRACTd, X UL) ELSE X I);

CONS IS X(X, Y) CONC(UNITSEQ X, Y);

AUG IS X(X, Y) CONC(X, UNITSEQ Y);

SUBSEQ IS X(L, U, X) VECTORd, INC SUBTRACT(U, L), XI X DEC ADD(I, D) ;

HEAD IS XX SUBSEQd, DEC X UL, X);

TAIL IS XX SUBSEQ(2, X UL, X);

REPLACE IS X(I, V, X) VECTORd, X UL, XJ IF J = I THEN V ELSE X J);

SEARCH ISR X(N, P, F, G)

IF NOT GREATER(N, 0) THEN GO ELSE IF P N THEN F N ELSE SEARCH(DEC N, P, F. G);

STREQUAL ISR X(X. Y)

X UL = Y UL AND SEARCH(X UL. XI NOT(X I = Y I). XI FALSE, X() TRUE);

The function CONC concatenates two sequences. CONS (or AUG) adds a component

to the beginning (or end) of a sequence. SUBSEQ(L, U. X) produces the subse

quence of X which begins with the Lth compqpent and ends with the Uth component.

HEAD (or TAIL) reproduces its argument with the last (or first) component deleted,

REPLACEd, V. X) reproduces the sequence X with the Ith component replaced by V,

The function SEARCH(N, P, F, G) is used for searching through a sequence.

It successively tests the predicate P I for the integers I = N, N-1. ... , 1 .

If P I is true, it evaluates F I and returns the result. If all tests of P are

false, it evaluates G () and returns the result. The function STREQUAL uses

SEARCH to determine if two sequences of primitive data are equal.

In the sequel, we will frequently use sequences which obey a stack dis

cipline. In such cases, the first sequence component will be the most recently

added stack element, so that stack elements will be added by using the function

CONS and deleted by TAIL,

35

We now define functions which use the value of D o e

records. The following functions test set membership:

T ISR X(X, S)

,™.o.-p Y FISE I F S = BOOLCLASS THEN ISBOOLEAN X
IF S = INTCLASS THEN ISINTEGER X ELSE i t t>

. . .o i i . c v rTc;F IF S = UNIVERSAL THEN TRUE
ELSE IF S = CHARCLASS THEN ISCHAR X ELSE I F b

ELSE SEARCH(D UL, XI (D I) 2 = S ,

XI IF (D I) 1 = CLASS THEN ISFUNCTION X AND X TYPE = S

ELSE TUNION(X, TAIL TAIL D I) ,

XO GOTO ERROR);

TUNION ISR X(X, U)

SEARCH(U UL, XI T(X, U I) , XI TRUE, X() FALSE);

TSEQ ISR X(X, S)

X LL = 1 AND SEARCH(X UL, XI NOT T(X I , S) , XI FALSE, X() TRUE);

T(X, S) a c c e p t s a r e c o r d or p r i m i t i v e datum X and a s e t name S , and t e s t s

whe the r X i s a member of t h e s e t d e n o t e d by S . TUNION(X, U) a c c e p t s a s e q u e n c e

U of s e t names , and t e s t s w h e t h e r t h e r e c o r d o r p r i m i t i v e da tum X i s a member

of any of t h e s e t s d e n o t e d by t h e componen t s o f U. TSEQ(X, S) a c c e p t s a

v e c t o r X whose components a r e r e c o r d s o r p r i m i t i v e d a t a , and t e s t s w h e t h e r X

i s a s equence i n which e v e r y component i s a member o f t h e s e t d e n o t e d by t h e

s e t name S.

The f o l l o w i n g f u n c t i o n c r e a t e s r e c o r d s :

M ISR XX

(C , V IS IF ISATOM X THEN X, () ELSE (X 1 . TAIL X) ;

SEARCH(D UL, XI (D I) 1 = CLASS AND (D I) 2 = C,

XI M1(C, V, TAIL TAIL D I) , X() GOTO ERROR));

37

Ml ISR X(C, V, F)

IF V UL = F UL AND SEARCH(V UL,

XI NOTdF (F I) 2 = SEQ THEN TSEQ(V I . (F I) 3) ELSE T(V I , (F I) 2)) ,

XI FALSE. X() TRUE)

THEN XX IF X = TYPE THEN C ELSE SEARCH(V UL, XI X = (F I) 1 , V,

X() GOTO ERROR)

ELSE GOTO ERROR;

M accepts an argument (C, v , ... , v), where C is a class name and the v.

are field values, which may be primitive data, records, or sequences thereof.

The special case n = 0 (corresponding to a record with no fields) is treated

differently, so that one may write M C instead of M UNITSEQ C. If C has the

class definition (CLASS, C, (f , r), ,.. , (f^, r^)) then M produces a record

R in class C such that R f. = v.. Checks are performed to insure that the
1 1

number of field values is correct, and that each v. satisfies the range

descriptor r..

In manipulating records, we will use the functions T(X, S) and

M(C, V , ... , V) only in function designators in which S and C are constant

atoms. There is a serious inefficiency in this situation, since each time a

particular function designator is executed it will perform a search over the

value of D whose outcome will always be the same. This inefficiency is irrele

vant to our present purpose of using GEDANKEN as a vehicle for formal definition,

but it is symptomatic of a limitation of the language, which might be overcome

by introducing macro-definitional facilities.

As a simple example of the use of T and M, the following function will

produce the (unsimplified) derivative of an expression X by a variable Y,

using the abstract syntax for algebraic expressions given above:

38

DERV ISR X(X, Y)

IF T(X, CONSTANT) THEN M(CONSTANT, 0)

ELSE IF T(X, VARIABLE) THEN M(CONSTANT,

IF STREQUAL(X STRING, Y STRING) THEN 1 ELSE 0)

ELSE IF T(X, SUM) THEN M(SUM. DERV(X LEFT, Y) , DERV(X RIGHT, Y))

ELSE M(SUM, M(PRODUCT, DERV(X LEFT, Y) , X RIGHT),

M(PRODUCT, X LEFT, DERV(X RIGHT, Y))) ;

A b s t r a c t Syntax of GEDANKEN

We now g i v e an a b s t r a c t s y n t a x d e f i n i t i o n s p e c i f y i n g t h e s e t o f GEDANKEN

d a t a s t r u c t u r e s which w i l l be u sed t o r e p r e s e n t GEDANKEN p r o g r a m s . I t i s e v i

d e n t t h a t t h i s a b s t r a c t s y n t a x w i l l be c o n s i d e r a b l y s i m p l e r t h a n t h e c o n c r e t e

(BNF) s y n t a x of GEDANKEN, e . g . , t h e d i s t i n c t i o n b e t w e e n d i f f e r e n t p r e c e d e n c e

l e v e l s f o r e x p r e s s i o n s and p a r a m e t e r forms w i l l d i s a p p e a r . F u r t h e r s i m p l i f i c a

t i o n i s o b t a i n e d by d e l e t i n g v a r i o u s l a n g u a g e c o n s t r u c t i o n s w h i c h c a n b e

t r e a t e d a s a b b r e v i a t i o n s :

(UNION, EXP, CONSTANT, IDENT, FUNCTDES, LAMBDAEXP, CONDEXP, CASEEXP, BLOCK),

(CLASS, CONSTANT, (VALUE, VALUEDEN)),

(UNION, IDENT, PROGIDENT, INTRIDENT),

(CLASS, PROGIDENT, (STRING, SEQ, CHARCLASS)),

(CLASS, INTRIDENT, (NAME, INTCLASS)),

(CLASS, FUNCTDES, (FUNCTPART, EXP) , (ARGPART, E X P)) ,

(CLASS, LAMBDAEXP, (PARAHPART, IDENT), (BODY, E X P)) ,

(CLASS, CONDEXP, (PREMISS, EXP) , (CONCLUSION, E X P) , (ALTERNATIVE. E X P)) ,

(CLASS, CASEEXP, (INDEX. EXP) , (BODY, SEQ, E X P)) ,

(CLASS, BLOCK, (RDECLPART, SEQ, RDECL), (LDECLPART, SEQ, LDECL),

(BODY, SEQ, E X P)) ,

39

(CLASS, RDECL, (LEFT, IDENT), (RIGHT, LAMBDAEXP)),

(CLASS, LDECL, (LEFT, IDENT), (RIGHT, SEQ, EXP)),

(UNION. PFORM. IDENT. SEQPFORM).

(CLASS, SEQPFORM, (BODY, SEQ, PFORM))

The following comments pertain to the above definition:

(1) We postpone defining the set named VALUEDEN (value denotations) until

the discussion of the interpreter. In general, value denotations will be data

structures used in the interpreter to represent values computed by the program

which is being interpreted. For the moment, we only specify that there is a

distinct value denotation for every member of the universal value set, and that

the set of value denotations includes integers, boolean values, and characters,

which all denote themselves.

(2) A variety of forms occurring in the concrete syntax do not occur in

the abstract syntax, e.g., expressions involving =, AND, OR, or :=, sequence

expressions, sequence parameter forms, and nonrecursive declarations. Each of

these forms can be regarded as an abbreviation, and is eliminated during the

conversion of a concrete program into an abstract program, (Note that sequence

parameter forms are still defined in the abstract syntax, but are not allowed

to occur in any type of expression. This reflects the fact that these forms

will be used as temporary quantities during the concrete-abstract conversion,

but will not occur in the final result of this conversion.)

(3) Abstract programs will contain two classes of identifiers: program

identifiers (PROGIDENT). which are images of identifiers occurring in the

original concrete program; and internal identifiers (INTRIDENT). which are

introduced during the conversion process. Different internal identifiers are

distinguished by their integer-valued NAME fields.

40

(4) The imp l i c i t dec la ra t ion of l abe ls i s made e x p l i c i t in the a b s t r a c t

u K A., of a block, which i s simply a
syntax. Labels no longer appear in the body

ions) I n s t e a d , each i d e n t i f i e r
sequence of unlabel led statements (i , e . , express i

used as a l abe l occurs in a l abe l dec l a r a t i on , in which i t i s p a i r e d wi th t he

sequence of unlabel led statements t o be executed a f t e r a jump t o t he l a b e l

has occurred.

Concrete Syntax of GEDANKEN

The syntax of concrete programs i s defined in two s t a g e s : (1) A unique

p a r t i t i o n i n g of the program in to a sequence of c h a r a c t e r s t r i n g s c a l l e d tokens

i s spec i f ied , and then (2) The s e t of well-formed programs i s def ined by a

grammar over the i n f i n i t e vocabulary of tokens .

The tokens themselves s a t i s fy the following grammar:

<character> i:= " | <quotable character>

<quotable character> ::= < l e t t e r or d ig i t> | X | , | =] : | (|) | ; |

^J \ <extra character>

< l e t t e r or d igi t> :;= <le t te r> | <digit>

<letter> : : = A | B | C | D | E | F | G 1 H | I | J | K | L | M | N | O |

P | Q | R | S | T | U I V | W | X | Y | Z

<digit> : : = 0 | l | 2] 3 | 4 | 5 | 6 | 7 | 8 | 9

<token> ;:= <integer token> | <quoted string token> | <word token> |

<punctuation token>

<integer token> ::= <digit> { <diglt>}*

<quoted string token> ::= "{<quotable character>}*"

<word token> ::= <letter> { <letter or digit>)*

<punctuation token> : : = X | , | = | : | (|) | ; | : =

Here the symbol ^ denotes a blank and the undefined class <extra character>

denotes the set of all Input-representable characters not occurring elsewhere

in the syntax.

41

A concrete GEDANKEN program must be a sequence of tokens separated by

zero or more blanks, with at least one blank used to separate any of the

following pairs:

Left Token Right Token

<integer token> <integer token>

<word token> <integer token>

<word token> <word token>

This separation condition is sufficient to insure the unique partitioning of

any program.

The class of <word token>'s is subdivided into <reserved word token>'s,

which are the strings AND, OR, IF, THEN, ELSE, CASE, OF, IS, and ISR, and

<identifier token>'s, which are all other <word token>'s.

Once a program has been partitioned into tokens, and the separating blanks

have been deleted, it is parsed according to the grammar given on the lefthand

side of Table I. (This grammar is equivalent to that given in Chapter II, but

has been altered somewhat to simplify the <;onverslon to abstract syntax.)

In the productions of this grammar, reserved word and punctuation tokens appear

as terminal objects, while identifier, integer, and quoted string tokens

appear as undefined syntactic classes.

Parsing methO(feare well-understood, and will not be described here. We

simply assert that a well-formed GEDANKEN program can be transformed into a

derivation tree with the following properties:

(1) Each node is associated with either a token or a production of the

grammar in Table I.

(2) A node associated with a token is a terminal node.

Productions

<identifier> ::= <identifier token>

<exp > ::= <integer token>

I <quoted string token>

<identifier>

I (<block2>)

<exp > ::= <exp >

I <expQ><expj^>

<exp <exp.

I <expj^> = <exp2>

«exp,> '. 8= <exp2>

1 <exp,> AND <exp2>

exp|^> !!= <exp2>

I <exp3> OR <exp^>

:expj> sjs <exp^>

I i r <exp > THEN <exp > ELSE <exp >

I X <pform.><expj>

<expj^> !» <expg

A s s o c i a t e d T r a n s l a t i o n F u n c t i o n s

XX M(PROGIDENT, X)

XX M(CONSTANT, CONVERTINT X)

XX TRANSTRING HEAD TAIL X

XX X

XX X

XX X

X(X, Y) M(FUNCTDES, M(FUNCTDES, COERCECON, X) , Y)

XX X

X(X, Y) M(FUNCTDES, EQUALCON, TRANSEQEXP(X, Y))

XX X

X(X, Y) M(CONDEXP, M(FUNCTDES, COERCECON, X) ,

M(FUNCTDES, COERCECON, Y) , M(CONSTANT, FALSE))

XX X

X{X, Y) M(CONDEXP, M(FUNCTDES, COERCEON, X) ,

MCCONSTANT, TRUE), M(FUNCTDES, COERCECON, Y))

XX X

X(X, Y, Z) H(CONDEXP, M(FUNCTDES, COERCECON, X) , Y, Z)

TRANSLAMBDA

X(X, Y) M(FUNCTDES, SETCON, TRANSEQEXP(X, Y))
TABLE I ,

Productions

<exp,> ::= <exp.>

I <empty>

I <exp,> , <expg> {, <exp >}*

I CASE <expg> OF <expj> {, <expj>}*

<pform„> :;»: <identifier>

I (<pfonii,>)

<pform > ::= <pform.>

I <empty>

I <pform > , <pform.> {, <pform >}*

<block.> <exp^>

I <expg> J <block >

I <identifier> : <block >

Associated Translation Functions

XX X

TRANSEQEXP

TRANSEQEXP

XX M(CASEEXP, M(FUNCTDES, COERCECON, X I) , TAIL X)

XX X

XX X

XX X

XX MCSEQPFORM, X)

XX MCSEQPFORM, X)

XX HCBLOCK, O , O , UNITSEQ X)

X(X, Y) M(BLOCK, (), Y LDECLPART, CONSCX, Y BODY))

X{X, Y) M(BLOCK, (),

CONS(M(LDECL, X, Y BODY), Y LDECLPART), Y BODY)

<block > ::= <blockQ> XX X

I <identifier> ISR X <pformg><expj>; <blockj^> X(X. Y. Z. W) HCBLOCK. CONS(M(RDECL. X. TRANSLAMBDACY. Z)),

W RDECLPART). W LDECLPART, W BODY)

<block>i5» <block >

[<pforra.> IS <expg>} <block2>

<program> ::= <block2>

XX X

TRANSDECL

XX X

TABLE I (continued)

44

(3) If a node is associated with a production which has n items on its

V. A ,. If the ith item on the right side
right side, then the node has n subnodes, n

of the production is a specific token (token class, syntactic class), then the

ith subnode is associated with the specific token (some member of the token

class, some production whose left side is the syntactic class).

Translation into Abstract Form

The conversion of a derivation tree into an abstract program is an instance

of syntax-directed translation. ̂ ^"'^^ With each production of the grammar in

Table I, we associate a GEDANKEN function which expresses the translation of

any phrase which is an instance of that production in terms of the translations

of its subphrases.

This process can be described more precisely as follows: The nodes of the

derivation tree are translated in some order such that no node is translated

until after all of its subnodes have been translated. If a node is associated

with a token, its translation is a sequence whose components are the characters

of the token. If a node is associated with a production, its translation is

obtained by applying the corresponding translation function to a sequence whose

components are the translations of the immediate subnodes, excepting those sub-

nodes which are associated with reserved word or punctuation tokens. In the

special case where this sequence has a single component, the component itself,

rather than the one-component sequence, is used as the argument to the transla

tion function.

A compound production containing the metasymbol] is regarded as an

abbreviation for a set of productions with the same left side; each of these

productions may have a distinct associated translation function, A production

containing the metasymbols {}•' is regarded as an abbreviation for the infinite

set of productions whose members are formed by replicating the bracketed

45

elements k times, for each k - 0; a l l of these productions will have the same

associated translation function. When the right side of a production is

<empty>, the associated translation function receives an empty sequence as

i t s argument. The following subsidiary functions and other values are used by

the translation functions:

IICOUNT IS REF 0;

CRIDENT IS X() (IICOUNT := INC IICOUNT; M(INTRIDENT, VAL IICOUNT));

EQUALCON IS M(CONSTANT, GETVALPREDEF H(PROGIDENT, "EQUAL"));

SETCON IS M(CONSTANT, GETVALPREDEF MCPROGIDENT, "SET")) ;

COERCECON IS MCCONSTANT, GETVALPREDEF MCPROGIDENT, "COERCE"));

CMJVERTINT ISR XX IF X UL = 0 THEN 0 ELSE

ADDCDIGITTOINT X X UL, MULTIPLYClO, CONVERTINT HEAD X)) ;

TRANSTRING IS XX IF X UL = 1 THEN M(CONSTANT, X 1) ELSE

(I IS CRIDENTO; M(LAMBDAEXP, I , M(CASEEXP, M(FUNCTDES, COERCECON, I) ,

VECTORd, X UL, XJ M(CONSTANT, X J))))) ;

TRANSDECL ISR X(P, E , B) M(FUNCTDES, TRANSLAMBDA(P, B) , E) ;

TRANSLAMBDA ISR XCP, B) IF T(P, IDENT),THEN M(LAMBDAEXP, P . B)

ELSE (I IS CRIDENTO; K IS REF (P BODY) UL; R IS REF B;

LOOP: IF K = 0 THEN GOTO DONE ELSE

R := TRANSDECL((P BODY) VAL K. MCFUNCTDES.

MCFUNCTDES, COERCECON. I) . MCCONSTANT, VAL K)) , VAL R) ;

K := DEC K; GOTO LOOP;

DONE: MCLAMBDAEXP, I , VAL R)) ;

TRANSEQEXP ISR XX

(S IS VECTORd, X UL, XJ CRIDENTO); I IS CRIDENTO; K IS REF X UL;

R IS REF M(LAMBDAEXP. I . M(CASEEXP. M(FUNCTDES, COERCECON. I) . S)) ;

46

LOOP: IF K = 0 THEN GOTO DONE ELSE

R := TRANSDECL(S VAL K, X VAL K, VAL R);

K := DEC K; GOTO LOOP;

DONE: VAL R);
- .,™in+ nf the number of i n t e r n a l

The global reference IICOUNT maintains a count of

i d e n t i f i e r s which have been created during the t r a n s l a t i o n p r o c e s s . I t i s used

by the function CRIDENTO. which re tu rns a d i s t i n c t i n t e r n a l i d e n t i f i e r each

time i t i s executed.

The values of EQUALCON, SETCON, and COERCECON are cons t an t s denot ing t he

basic functions EQUAL, SET, and COERCE. The value f i e l d s of these c o n s t a n t s

are obtained from the function GETVALPREDEF (t o be defined l a t e r) , which p r o

duces the value denotations of predefined i d e n t i f i e r s . The use of t he se cons tan t s

instead of the corresponding i d e n t i f i e r s insures t h a t r e d e c l a r a t i o n of the iden

t i f i e r s w i l l not affect imp l i c i t coercion or the meaning of the ope ra t i ons = and :

CONVERTINT converts a sequence of d i g i t s i n t o the corresponding i n t e g e r .

TRANSTRING t r a n s l a t e s quoted s t r i n g tokens (a f t e r d e l e t i o n of the enc los ing

quote cha rac t e r s) . If n ^ 1, the token "c , , , c " i s t r a n s l a t e d i n t o the

abs t rac t equivalent of Xi (CASE i OF "c " , . . . , "c ") ,

The three interconnected funct ions TRANSDECL, TRANSLAMBDA, AND TRANSEQEXP

el iminate d e c l a r a t i o n s , sequence parameter forms, and sequence e x p r e s s i o n s .

Their e f fec t i s e s s e n t i a l l y equ iva len t t o repea ted a p p l i c a t i o n of the fol lowing

equivalences:

p IS e ; b = ^ (X(p)(b))Ce)

X(p^, , 0 . , p) b (when n ?! 1)

^ X i (p^ IS i 1; , , , ; p IS i n ' ; b)

, , . , e (when n ?! 1)

(i , IS e , ; , , . ; i IS e ; XI (CASE i OF 1 , , . . . , 1))
l i n n 1 n

47

where n' is an integer constant whose value is n, and i, i,. ... , i are
I n

unique internal identifiers.

A final effect of the translation process is to insert explicit calls of

COERCE for the implicit coercion performed by AND-, OR-, conditional, and case

expressions, function designators, sequence parameter forms, and the functions

produced by sequence expressions.

Semi-Basic Functions

Some of the basic functions in GEDANKEN have been introduced for reasons

of convenience or efficiency, and are not basic in a theoretical sense. Rather

than including these functions in the abstract language accepted by our inter

preter function, we will eliminate them by defining them in terms of lambda-

expressions involving the remaining basic functions.

Thus we assume that a concrete GEDANKEN program, before being parsed, will

be enclosed in parentheses and preceded by the following standard declarations:

UNITSEQ IS XX XI (CASE I OF X);

NOT IS XX IF X THEN FALSE ELSE TRUE;

INTTODIGIT IS XX *

(CASE INC X OF "0", "1", "2", "3", "4", "5". "6", "7", "8", "9");

DIGITTOINT IS XX (X IS COERCE X;

IF X = "0" THEN 0 ELSE IF X = "1" THEN 1 ELSE IF X = "2" THEN 2 ELSE

IF X = "3" THEN 3 ELSE IF X = "4" THEN 4 ELSE IF X = "5" THEN 5 ELSE

IF X = "6" THEN 6 ELSE IF X = "7" THEN 7 ELSE IF X = "8" THEN 8 ELSE

IF X = "9" THEN 9 ELSE GOTO ERROR);

VECTOR ISR X(L, U, F) CL IS COERCE L; U IS COERCE U; F IS COERCE F;

IF GREATERCL, U) THEN XI (I IS COERCE I;

IF I = LL THEN L ELSE IF I = UL THEN DEC L ELSE GOTO ERROR)

ELSE (V IS VECTOR(L, DEC U, F); T IS F U; XI (I IS COERCE I;

IF I = UL THEN U ELSE IF I = U THEN T ELSE V I)));

48

NEG ISR XX (X IS COERCE X; IF NOT ISINTEGER X THEN GOTO ERROR

ELSE I F X = 0 THEN 0 ELSE IF GREATER(X, 0) THEN DEC NEG DEC X

ELSE INC NEG INC X) ;

ADD ISR X(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y THEN GOTO ERROR

„ „.ur.., V T-TQr TF r,REATER(X. 0) THEN INC ADDCDEC X, Y) ELSE IF X = 0 THEN Y ELSE IF bKLfliLKVA, ^i

ELSE DEC ADDCINC X, Y)) ;

SUBTRACT ISR X(X, Y) (X IS COERCE X; Y IS COERCE Y; ADD(X, NEG Y)) ;

MULTIPLY ISR X(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y THEN GOTO ERROR

ELSE IF X = 0 THEN 0 ELSE IF GREATER(X, 0) THEN ADD(MULTIPLY(DEC X, Y) , Y)

ELSE SUBTRACT{MULTIPLY(INC X, Y) , Y)) ;

DIVIDE ISR X(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y OR Y = 0 THEN GOTO ERROR

ELSE IF GREATER(0, Y) THEN NEG(DIVIDE(X, NEG Y))

ELSE IF NOT GREATER(Y, X) THEN INC DIVIDE(SUBTRACT(X, Y) , Y)

ELSE IF NOT GREATER(Y, NEG X) THEN DEC D I V I D E C A D D C X , Y) , Y) ELSE 0) ;

REMAINDER ISR X(X, Y) (X IS COERCE X; Y IS COERCE Y;

SUBTRACT(X, MULTIPLY(Y, DIVIDE(X, Y)))) ;

For t h e r e m a i n d e r of t h i s c h a p t e r , we w i l l no l o n g e r c o n s i d e r t h e a b o v e -

d e f i n e d f u n c t i o n s t o be b a s i c .

The I n t e r p r e t e r

We now d e v e l o p t h e d e f i n i t i o n of a f u n c t i o n , c a l l e d INTERPRET, w h i c h a c c e p t s

an a b s t r a c t program (i . e , , a d a t a s t r u c t u r e b e l o n g i n g t o t h e s e t named EXP) and

p roduces (t h e d e n o t a t i o n o f) i t s v a l u e . E s s e n t i a l l y , t h i s f u n c t i o n s i m u l a t e s

a machine which p a s s e s t h r o u g h a s u c c e s s i o n o f s t a t e s . Each s t a t e i s o b t a i n e d

49

from the preceding state by applying the function TRANSITION. Certain terminal

states, which satisfy the predicate ISTETO1STATE, cause the machine to stop and

return a value. Thus we have:

INTERPRET ISR XP INTERPRETl INITIALSTATE P;

INTERPRETl ISR XS IF ISTERMSTATE S THEN FINALVALUE S

ELSE INTERPRETl TRANSITION S;

where S is always bound to a record in the class named STATE,

Before defining the subsidiary functions of INTERPRET, we must specify

the abstract syntax of states, A STATE is a record with six fields:

(CLASS, STATE, (CONTROL, SEQ, INST), (STACK, SEQ, VALUEDEN),

(ENVR, SEQ, ENVELEM), (DUMP, SEQ, DUMPELEM),

(MEMORY, SEQ, VALUEDEN), (ATOMCOUNT, INTCLASS))

The control is a sequence of instructions to be executed. They are similar

to the instructions of a conventional computer, except that certain instructions,

when executed, may expand into several simpler instructions instead of being

deleted from the sequence. The stack is a sequence of value denotations which

is used to store intermediate results during the evaluation of compound expressions.

The environment is a sequence of environment elements, each of which specifies

the current binding of an identifier (except for environment marks, which are

described below).

The dump is a sequence of dump elements, with the syntax

(CLASS. DUMPELEM, (CONTROL, SEQ, INST), (STACK. SEQ, VALUEDEN),

(ENVR, SEQ, ENVELEM)),

which are used to save the control, stack, and environment portions of the state

whenever a new block or lambda-expression body is evaluated, A new element is

added to the dump whenever such evaluation begins, and the appropriate fields

of the state are restored from this element when the evaluation is completed.

50

The memorj. is a sequence of value denotations which specifies the values

of references. Each (nonimplicit) reference denotation will contain an

«.r +-v,ie fipld is !• then the
integer-valued field named ADDRESS; if the value of this field

value of the denoted reference will be the ith component of the memory. The

atom count is an integer giving the total number of atoms which have been

created during the execution of the program.

Value denotations have the following abstract syntax:

(UNION, VALUEDEN, INTCLASS, BOOLCLASS, CHARCLASS, ATOMDEN, FUNCTDEN,

REFDEN, LABELDEN),

(UNION, ATOMDEN, LLDEN, ULDEN, PROGATOMDEN),

(CLASS, LLDEN),

(CLASS, ULDEN),

(CLASS, PROGATOMDEN, (NAME, INTCLASS)),

(CLASS, FUNCTDEN, (CONTROL, SEQ, INST), (ENVR, SEQ, ENVELEM)),

(UNION, REFDEN, EXPREFDEN, IMPREFDEN),

(CLASS, EXPREFDEN, (ADDRESS, INTCLASS)),

(CLASS, IMPREFDEN, (SETF, FUNCTDEN), (VALF, FUNCTDEN)),

(UNION, LABELDEN, ERRORDEN, PROGLABELDEN),

(CLASS, ERRORDEN),

(CLASS, PROGLABELDEN, (BODY, SEQ, EXP), (ENVR, SEQ, ENVELEM),

(DUMP, SEQ, DUMPELEM))

Fieldless record classes, such as LLDEN and ULDEN, each contain a single record

which is only applicable to the argument TYPE. The records in LLDEN and ULDEN

denote the atoms LL and UL. All other atoms are denoted by records in the class

PROGATOMDEN, and are distinguished by the integer values of their name fields.

Records in the class FUNCTDEN denote functions; their CONTROL field gives a

sequence of instructions for evaluating the function, and their ENVR field gives

an initial environment to be used during the execution of these instructions.

51

Explicit references are denoted by the class EXPREFDEN; the integer-valued

ADDRESS field distinguishes distinct references and specifies the component of

the memory which is the value of the reference. Implicit references are denoted

by the class IMPREFDEN; the fields SETF and VALF give denotations of the func

tions for setting and evaluating the reference.

The single record in the class ERRORDEN denotes the label ERROR. All other

labels are denoted by the class PROGLABELDEN, in which the field BODY gives a

sequence of expressions to be executed when a jump to the label occurs, ENVR

gives the identifier bindings for these expressions, and DUMP gives a sequence

of dump elements indicating the computation to be carried out after the expres

sions in BODY have been evaluated. The values of ENVR and DUMP constitute the

"current status" discussed in the previous chapter.

We next consider the syntax of environments. An environment element is

normally a pair, consisting of an identifier and the denotation of the value

to which it is bound. Thus, except for the difficulties discussed below, we

would have the syntax:

(CLASS, ENVELEM, (LEFT, IDENT), ([RIGHT. VALUEDEN))

But this form of environment is incapable of describing the effects of recursive

declarations and label declarations. These declarations must bind identifiers

to function and label denotations whose ENVR field specifies an environment

containing the new binding. Unfortunately, this type of explicit circularity

cannot be represented by abstract syntactic data structures (which cannot be

implicit data structures nor contain imbedded references).

To avoid this difficulty, we use the following subterfuge: recursive

declarations and label declarations will bind identifiers to special recursive

denotations which do not contain ENVR fields. During the execution of each

block, immediately after all declarations have been executed, an element called

an environment mark will be added to the environment. Then, whenever a search

52

ENVR field will be added
of the environment yields a recursive denotation, an

of thP searched environment
to the denotation which specifies the portion of the

beginning at the last-encountered mark.

Thus environment elements have the following syntax:

CUNION, ENVELEM, ENVMARK, ENVPAIR),

CCLASS, ENVMARK),

(CLASS, ENVPAIR, (LEFT, IDENT), (RIGHT, ENVVALUEDEN)),

(UNION, ENVVALUEDEN. VALUEDEN, RECFUNCTDEN, RECLABELDEN),

(CLASS, RECFUNCTDEN, (CONTROL, SEQ, I N S T)) ,

(CLASS. RECLABELDEN, (BODY, SEQ, EXP), (DUMP, SEQ, DUMPELEM))

The f u n c t i o n GETVAL(X, E) s e a r c h e s an e n v i r o n m e n t E (i n i n c r e a s i n g o r d e r o f

components) t o o b t a i n t h e d e n o t a t i o n of t h e v a l u e bound t o an i d e n t i f i e r X:

GETVAL ISR X(X, E) GETVALlCX, E , ()) ;

GETVALl ISR X(X, E , EM)

IF E UL = 0 THEN GETVALPREDEF X

ELSE IF T(E 1 , ENVMARK) THEN G E T V A L K X , TAIL E , E)

ELSE IF IDEQUAL(X, (E 1) LEFT) THEN

(V IS (E 1) RIGHT;

IF T(V, RECFUNCTDEN) THEN M(FUNCTDEN, V CONTROL, EM)

ELSE IF T(V, RECLABELDEN) THEN M(PROGLABELDEN, V BODY, EM. V DUMP)

ELSE V)

ELSE G E T V A L K X , TAIL E , EM);

IDEQUAL ISR X(X, Y)

T(X, PROGIDENT) AND T(Y, PROGIDENT) AND STREQUAL(X STRING, Y STRING)

OR T(X, INTRIDENT) AND T(Y, INTRIDENT) AND X NAME = Y NAME;

GETVALPREDEF ISR XX

SEARCH(30, XI T(X, PROGIDENT) AND STREQUAL(X STRING, PREDEFIDSTRS I) ,

PREDEFVDENS, X() GOTO ERROR);

53

The subsidiary function IDEQUAL determines if two identifiers are equal.

The function GETVALPREDEF, which produces the value denotations of predefined

identifiers, uses two parallel sequences PREDEFIDSTRS and PREDEFVDENS, whose

components are the identifier string fields and value denotations of the pre

defined identifiers. The values of these sequences will be given later.

The final set for which we must give an abstract syntax is the set of

instructions:

CUNION, INST, EXP. RDECL, LDECL, EXEC, BRANCH, SELECT, BIND. APPLY.

MARKENV. DELETE. BASICFUNCTINST),

CCLASS. EXEC. CBODY. SEQ. EXP)).

CCLASS, BRANCH. CCONCLUSION, EXP). (ALTERNATIVE. EXP)).

CCLASS. SELECT. (BODY, SEQ, EXP)),

CCLASS, BIND, CBODY, IDENT)),

CCLASS. APPLY),

(CLASS. MARKENV),

(CLASS. DELETE).

(CLASS. BASICFUNCTINST, (STRING. SEQ., CHARCLASS))

The following is an informal description of the effect of each class of

instructions. Certain instructions, such as compound expressions, require

repeated applications of TRANSITION to be completed; a single application of

TRANSITION will cause such an instruction to be replaced by a sequence of

simpler instructions,

EXP: The expression is evaluated and its value is added to the stack.

RDECL; A recursive function denotation is created from the lambda

expression on the right of the declaration, and the environment is extended

by binding the identifier on the left to this denotation.

54

, 1- 1 ̂ ..r,oi-=i-ion is created from the expression
LDECL: A recursive label denotation is t.i<=

sequence on the right of the declaration and the current value of the dump,

and then the environment is extended by binding the identifier on the left

to this denotation,

;„ i-v,= in=:truction body is evaluated, EXEC: The sequence of expressions in the instruction u y

and the value of the last expression is added to the stack,

BRANCH; If the first stack component is TRUE Cor FALSE), then the

CONCLUSION (or ALTERNATIVE) is evaluated and its value replaces the first

stack component.

SELECT: If the first stack component is an integer i, then the ith

component of the instruction body is evaluated and its value replaces the

first stack component. If the first stack component is the atom LL Cor UL),

then it is replaced by 1 (or the length of the instruction body).

BIND: The environment is extended by binding the identifier in the

instruction body to the first stack component, which is deleted from the stack.

APPLY: The second stack component, which must be a function denotation,

is applied to the first stack component, and the result of this application

replaces the first two stack components.

MARKENV: A mark is added to the environment.

DELETE; The first stack component is deleted.

BASICFUNCTINST: A basic function instruction denotes the basic function

whose predefined identifier has the same STRING field. Prior to the execution

of the basic function instruction, the following actions will have occurred:

(1) The arguments will be "spread," i.e., if the function expects a sequence

of n arguments, the components of this sequence will be placed in the first

n stack positions (with the last component in the first stack position).

55

(2) The arguments will have been coerced appropriately. Then the effect of

the basic function instruction is to evaluate the corresponding basic function

and replace the first n stack components with its result.

We may now define the subsidiary functions of INTERPRET. In the initial

state, the control contains the program to be interpreted, the atom count is

zero, and the remaining state fields are empty. A state is terminal if its

control and dump are both empty; the resulting value is the first (and only)

component of the stack. Thus we have:

INITIALSTATE IS XP M(STATE, UNITSEQ P, (), O , O , (), 0);

ISTERMSTATE IS XS (S CONTROL) UL = 0 AND (S DUMP) UL = 0;

FINALVALUE IS XS CS STACK) 1;

The heart of the interpreter is the function TRANSITION. If the control

is empty, TRANSITION replenishes the control, stack, and environment from the

dump, saving the first component of the stack, which will be the value of the

block or function designator whose evaluation has just been completed. Other

wise, a massive branch on the class of the current instruction is executed,

and various fields of the state are updated in accordance with this instruction.

Since a particular instruction will normally affect only a few state

fields, it is inconvenient to show the unchanged fields explicitly for each

instruction. Thus we proceed in the following manner: Cl) Before the instruc

tion branch, references are created to each field value Cafter deleting the

current instruction from the control field). C2) Each instruction resets the

references to the fields which are updated. C3) After the branch, a new state

is constructed from the reference values,

TRANSITION is defined so that it will always terminate, even when used to

interpret a nonterminating GEDANKEN program. Such programs will cause the

interpreter to repeatedly apply TRANSITION without ever obtaining a terminal

state.

56

TRANSITION IS XS

CSTV, ENV, DMV. MRV, ACV IS S STACK, S ENVR, S DUMP, S MEMORY, S ATOMCOUNT;

IF CS CONTROL) UL = 0 THEN

MCSTATE, CDMV 1) CONTROL, CONSCSTV 1 , (DMV 1) STACK),

(DMV 1) ENVR, TAIL DMV, MRV, ACV)

ELSE

(X IS (S CONTROL) 1 ; CNV IS TAIL S CONTROL;

CN, ST, EN, DM, MR, AC IS REF CNV, REF STV, REF ENV, REF DMV, REF MRV, REF ACV;

S I , T l , S 2 , T2 IS IF STV UL = 0 THEN O , () , O , O

ELSE IF STV UL = 1 THEN STV 1 , TAIL STV, O , ()

ELSE STV 1 , TAIL STV, STV 2 , TAIL TAIL STV;

IF T(X, CONSTANT) THEN ST := CONS(X VALUE, STV)

ELSE IF T(X, IDENT) THEN ST := CONS(GETVAL(X, ENV), STV)

ELSE IF T(X, FUNCTDES) THEN CN := CONC((X FUNCTPART, X ARGPART, M APPLY), CNV)

ELSE IF T(X, LAMBDAEXP) THEN

ST := CONS(M(FUNCTDEN, (M(BIND, X PARAMPART), X BODY), ENV), STV)

ELSE IF T(X, CONDEXP) THEN

CN ;= CONC(CX PREMISS, M(BRANCH, X CONCLUSION, X ALTERNATIVE)), CNV)

ELSE IF T(X, CASEEXP) THEN CN := CONC((X INDEX, M(SELECT, X BODY)), CNV)

ELSE IF T(X, BLOCK) THEN

(DM := CONS(M(DUMPELEM, CNV, STV, ENV), DMV); ST := () ;

CN := CONC(X RDECLPART, CONC(X LDECLPART, (M MARKENV, M(EXEC, X BODY)))))

ELSE IF T(X, RDECL) THEN

EN := C 0 N S (M C E N V P A I R , X LEFT,

M(RECFUNCTDEN, (M(BIND, (X RIGHT) PARAMPART), (X RIGHT) BODY))) , ENV)

ELSE IF T(X, LDECL) THEN

EN := CONS(M(ENVPAIR, X LEFT, M(RECLABELDEN, X RIGHT, DMV)), ENV)

57

ELSE I F T(X, EXEC) THEN

CB IS X BODY; CN := I F B UL = 1 THEN CONSCB 1 , CNV)

ELSE CONCCCB 1 , M DELETE, M C E X E C , TAIL B)) , CNV))

ELSE IF T C X , BRANCH) THEN

I F T C S I , BOOLCLASS) THEN

CCN := CONSCX (I F S I THEN CONCLUSION ELSE ALTERNATIVE), CNV);

ST ;= T l)

ELSE GOTO ERROR

ELSE IF T(X, SELECT) THEN

I F TCSI , INTCLASS) AND NOT GREATERCl, S I) AND NOT GREATERCSl, CX BODY) UL)

THEN CCN := CONSCCX BODY) S I , CNV); ST := T l)

ELSE IF TCSI , LLDEN) THEN ST := C0NS(1 , T l)

ELSE I F T (S 1 , ULDEN) THEN ST := CONS((X BODY) UL, T l)

ELSE GOTO ERROR

ELSE IF T C X , BIND) THEN

CEN := CONS(M(ENVPAIR, X BODY. S I) . ENV); ST := T l)

ELSE IF T(X, APPLY) THEN •

I F T (S 2 . FUNCTDEN) THEN

(DM := CONS(M(DUMPELEM, CNV, T 2 , ENV), DMV);

CN := S2 CONTROL; EN := S2 ENVR; ST := UNITSEQ S I)

ELSE GOTO ERROR

ELSE I F T(X, MARKENV) THEN EN := CONS(M ENVMARK, ENV)

ELSE I F T (X , DELETE) THEN ST := T l

ELSE (Q IS XY STREQUALCX STRING, Y) ;

I F Q "ATOM" THEN

CAC := INC ACV; ST := CONSCMCPROGATOMDEN, INC ACV), STV))

58

ELSE IF Q "REF" OR Q "NCREF" THEN

(MR := AUG(MRV, S I) ; ST := CONS(M(EXPREFDEN, INC MRV UL) , T l))

ELSE IF (Q "SET" OR Q "NCSET") AND T (S 2 , REFDEN) THEN

IF T (S 2 , EXPREFDEN) THEN

(HR := REPLACE(S2 ADDRESS, S I , MRV); ST := C0NS(S1 , T 2))

ELSE (CN := CONC((M APPLY, M DELETE), CNV);

ST ;= C0NC((S1, S2 SETF, S I) , T2))

ELSE IF Q "VAL" AND T (S 1 , REFDEN) THEN

IF T (S 1 , EXPREFDEN) THEN ST := CONS(MRV S I ADDRESS. T l)

ELSE (CN := CONS(H APPLY, CNV); ST := CONC((M ERRORDEN, S I VALF), T l))

ELSE IF Q "COERCE" THEN

IF T (S 1 , REFDEN) THEN CN := CONC((M(BASICFUNCTINST, " V A L ") ,

M(BASICFUNCTINST, "COERCE")), CNV)

ELSE ()

ELSE IF Q "GOTO" AND T (S 1 , LABELDEN) THEN

IF T (S 1 . PROGLABELDEN) THEN (CN := UNITSEQ M(EXEC, S I BODY);

ST := O ; EN := S I ENVR; DM := S I DUMP)

ELSE GOTO ERROR

ELSE ST := CONS(

IF Q "ISINTEGER" THEN T (S 1 , INTCLASS), T l

ELSE IF Q "ISBOOLEAN" THEN T (S 1 , BOOLCLASS). T l

ELSE IF Q "ISCHAR" THEN T (S 1 , CHARCLASS), T l

ELSE IF Q "ISATOM" THEN T (S 1 , ATOMDEN), T l

ELSE IF Q "ISFUNCTION" THEN T (S 1 , FUNCTDEN). T l

ELSE IF Q "ISREF" THEN T (S 1 . REFDEN). T l

ELSE IF Q "ISLABEL" THEN T (S 1 . LABELDEN). T l

59

ELSE IF Q "IMPREF" AND T(S2. FUNCTDEN) AND T(S1. FUNCTDEN) THEN

M(IMPREFDEN, S2, SI), T2

ELSE IF Q "EQUAL" OR Q "NCEQUAL" THEN

T(S2, INTCLASS) AND T(S1, INTCLASS) AND S2 = SI

OR T(S2, BOOLCLASS) AND T(S1, BOOLCLASS) AND S2 = SI

OR T(S2, CHARCLASS) AND TCSI, CHARCLASS) AND S2 = SI

OR T(S2, LLDEN) AND T(S1, LLDEN) OR T(S2, ULDEN) AND T(S1, ULDEN)

OR TCS2, PROGATOMDEN) AND TCSl, PROGATOMDEN) AND S2 NAME = SI NAME

OR T(S2, EXPREFDEN) AND T(S1. EXPREFDEN) AND S2 ADDRESS = SI ADDRESS, T2

ELSE IF Q "GREATER" AND T(S2, INTCLASS) AND T(S1, INTCLASS) THEN

GREATER(S2, SI), T2

ELSE IF Q "CHARGREATER" AND T(S2. CHARCLASS) AND T(S1. CHARCLASS) THEN

CHARGREATER(S2. SI). T2

ELSE IF Q "INC" AND T(S1. INTCLASS) THEN INC SI, Tl

ELSE IF Q "DEC" AND T(S1, INTCLASS) THEN DEC SI, Tl

ELSE IF Q "READCHAR" THEN READCHARO. STV

ELSE IF Q "WRITECHAR" AND TCSl, CHARCLASS) THEN CWRITECHAR SI; SI, Tl)

ELSE GOTO ERROR));

HCSTATE, VAL CN, VAL ST, VAL EN, VAL DH. VAL MR, VAL AC)));

To complete the definition of the interpreter, we must give the sequences

of predefined identifier strings and value denotations which are used by

GETVALPREDEF:

PREDEFIDSTRS IS ("ISINTEGER", "ISBOOIDAN", "ISCHAR", "ISATOM", "ISFUNCTION",

"ISREF", "ISLABEL", "ATOM", "NCREF", "REF", "IMPREF", "NCSET", "SET", "VAL",

"COERCE", "GOTO", "NCEQUAL", "EQUAL", "GREATER", "CHARGREATER", "INC", "DEC",

"READCHAR", "WRITECHAR", "TRUE", "FALSE", "QUOTECHAR", "LL", "UL", "ERROR");

60

S i n c e t h e v a l u e of PREDEFVDENS i s f a i r l y c o m p l e x , we g i v e an e x p r e s s i o n f o r

comput ing i t r a t h e r t h a n an e x p l i c i t v a l u e :

PREDEFVDENS IS (X IS CRIDENTO; C IS M(BASICFUNCTINST. "COERCE");

ONE IS H(CONSTANT, 1) ; TWO IS M(CONSTANT, 2) ;

P I IS UNITSEQ M DELETE; P2 IS () ; P3 IS UNITSEQ C;

P4 IS (M(BIND. X) , X, C, ONE. H APPLY, X, C, TWO, H APPLY);

P5 IS (M(BIND, X), X, C, ONE, M APPLY, X, C, TWO, H APPLY, C);

P5 IS (H(BIND, X), X, C, ONE, M APPLY, C, X, C, TWO, H APPLY, C);

PLIST IS(P3, P3, P3, P3, P3, P2, P3, PI, P2, P3, P6, P4, P5, P2, P2, P3,

P4, P6, P6, P6, P3, P3, PI, P3);

D IS (TRUE, FALSE, QUOTECHAR, H LLDEN, H ULDEN, M ERRORDEN);

C0NC(VECT0R(1, 2 4 , XI H(FUNCTDEN,

AUG(PLIST I , M(BASICFUNCTINST, PREDEFIDSTRS I)) , ())) , D)) ;

The d e n o t a t i o n of each b a s i c f u n c t i o n h a s an empty e n v i r o n m e n t f i e l d and a

c o n t r o l f i e l d c o n s i s t i n g of t h e a p p r o p r i a t e b a s i c f u n c t i o n i n s t r u c t i o n p r e c e d e d

by an i n s t r u c t i o n s equence c a l l e d a p r e l u d e , whose p u r p o s e i s t o s p r e a d and

c o e r c e t h e f u n c t i o n a r g u m e n t s . The s i x p r e l u d e s shown a b o v e h a n d l e t h e f o l l o w

i n g c a s e s :

P I - no a r g u m e n t s , P2 - one n o n c o e r c e d a r g u m e n t , P3 - one c o e r c e d a r g u m e n t ,

P4 - two n o n c o e r c e d a r g u m e n t s , P5 - two a r g u m e n t s , t h e s e c o n d o f w h i c h i s c o e r c e d ,

P5 - two c o e r c e d a r g u m e n t s .

A D i r e c t I n t e r p r e t e r

In t h e p r e c e d i n g d e f i n i t i o n of an i n t e r p r e t e r f o r GEDANKEN, we h a v e l a r g e l y

avo ided t h e t y p e of d e f i n i t i o n a l c i r c u l a r i t y i n wh ich some l a n g u a g e f e a t u r e i s

d e f i n e d by u s i n g t h e same f e a t u r e i n t h e i n t e r p r e t e r i t s e l f . I n t h e few c a s e s

where such c i r c u l a r i t y o c c u r s , t h e f e a t u r e i n v o l v e d e i t h e r h a s a commonly

61

accepted unambiguous meaning (e.g., integer or boolean arithmetic), or has a

machine-dependent aspect whose precise definition we wish to avoid (e.g.,

character arithmetic or the input-output facilities provided by READCHAR and

WRITECHAR).

In this section we present a second interpreter, called DINTERPRET, which

has been designed to maximize, rather than minimize, definitional circularity.

It must be emphasized that DINTERPRET is not a definition of GEDANKEN; indeed

a surprising variety of changes in the semantics of the language leave the

validity of DINTERPRET unchanged. Nevertheless. DINTERPRET can be regarded

as an important (albeit unproved) theorem about GEDANKEN, and its brevity is

a measure of the simplicity of the language.

The transition from INTERPRET to DINTERPRET is based on two changes:

(1) Instead of defining an abstract syntax for value denotations, we

assume that the denotation of any member of the universal value set is an

equivalent value of the same type. Thus, for example, a function or label

value of the program being interpreted will be denoted by an equivalent function

or label value of the interpreter itself, .To effect this change, we must replace

the class definition of constants by

CCLASS, CONSTANT, CVALUE, UNIVERSAL))

and replace the list of value denotations for predefined identifiers by

PREDEFVDENS IS CISINTEGER, ISBOOLEAN, ISCHAR, ISATOM, ISFUNCTION,

ISREF, ISLABEL, ATOM, NCREF, REF, IHPREF, NCSET, SET, VAL,

COERCE, GOTO, NCEQUAL. EQUAL, GREATER, CHARGREATER, INC, DEC.

READCHAR, WRITECHAR, TRUE, FALSE, QUOTECHAR, LL, UL, ERROR);

62

C2) I n s t e a d o f t r e a t i n g an

d i r e c t a p p r o a c h o f d e f i n i n g an

e n v i r o n m e n t a s a s e q u e n c e o f marks and

i d e n t i f i e r - v a l u e p a i r s , we w i l l t a k e t h e more

e n v i r o n m e n t t o be a f u n c t i o n which maps i d e n t i f i e r s i n t o t h e d e n o t a t i o n s o f

t h e v a l u e s t o which t h e y a r e bound .

Then

DINTERPRET ISR XX EVALCX, GETVALPREDEF);

where EVAL(X, E) computes t h e v a l u e of t h e e x p r e s s i o n X i n t h e e n v i r o n m e n t E ;

EVAL ISR X(X, E)

IF T(X, CONSTANT) THEN X VALUE

ELSE IF T(X, IDENT) THEN E X

ELSE IF T(X, FUNCTDES) THEN (EVAL(X FUNCTPART, E)) EVAL(X ARGPART, E)

ELSE IF T(X, LAHBDAEXP) THEN

XA EVAL(X BODY, XK IF IDEQUAL(K, X PARAHPART) THEN A ELSE E K)

ELSE IF T(X, CONDEXP) THEN

IF EVAL(X PREHISS, E) THEN EVALCX CONCLUSION, E) ELSE E V A L C X ALTERNATIVE,

ELSE IF T(X, CASEEXP) THEN (I IS EVAL(X INDEX, E) j

I F ISATOM I THEN (X BODY) I ELSE EVAL((X BODY) I , E))

ELSE (R IS X RDECLPART; L IS X LDECLPART; S IS REF X BODY;

NE ISR XK SEARCH(L UL, XI IDEQUAL(K, (L I) LEFT) ,

XI (GOTO L2; L l : S := (L I) RIGHT; GOTO L 3 ; L2: L l) ,

XO SEARCHCR U L , XI IDEQUALCK, (R I) LEFT) ,

XI XA EVAL(((R I) RIGHT) BODY,

XK IF IDEQUAL(K, CCR I) RIGHT) PARAMPART) THEN A ELSE NE K) ,

XO E K)) ;

L3: EVALSEQ(VAL S , N E)) ;

EVALSEQ ISR X(X, E)

IF X UL = 1 THEN EVAL(X 1 , E) ELSE (EVAL(X 1 , E) ; EVALSEQ(TAIL X, E)) ;

63

IV. POSSIBLE EXTENSIONS AND MODIFICATIONS

Hopefully, the basic principles underlying GEDANKEN will eventually be

applicable to the design of an efficient and practically useful programming

language. We conclude by discussing some of the research problems that must

be solved to reach this goal.

Type Declarations

To achieve efficient data representation, the programmer must be able to

define sets of values, and specify that the range of various identifiers,

function results, and references are to be limited to such sets. Such informa

tion also allows a variety of programming errors to be detected during

compilation.

Probably the most natural approach is an extension of Hoare's concept of

record classes,'^' The programmer would be able to declare an arbitrary

number of disjoint function, reference, and label classes. He would then be

required to specify the range of each identifier, function result, or reference

to be some union of such classes (and/or predefined classes of primitive data).

Presumably, all functions in the same claSs would have the same argument and

result ranges, and all references in the same class would have the same value

range,

Class declarations would be permitted in the head of any block. If these

declarations are assumed to define a distinct class each time the block is

executed, then the language can be arranged so that all values in a given class

must become inaccessible when the block activation in which the class was

defined becomes inaccessible. Hopefully, this situation can be exploited to

increase the efficiency of storage allocation.

The functional approach to data structures used in GEDANKEN places special

requirements on a type declaration facility. In particular, if an inhomogeneous

64

data structure such as a record is to be treated as a function, then in

declaring the range of such a function i t must be possible to specify a

dependency on the function argument. Thus, for example, the set of l i s t s

of integers would be the union of the set {NIL} with a class of functions

with domain d , 2} which mapped 1 into an integer and 2 into a l i s t of integers ,

A final problem is the need for a more flexible set specification than

unions of classes. For example, if "matrix" is a function class and ADDMAT(X. Y)

is a function which adds matrices, then i t should be possible to specify, not

only that X, Y and the result of ADDHAT are matrices, but also that these

matrices must have the same row and column dimensions.

Open Functions

An efficient compilation of GEDANKEN programs which manipulate complex

data structures will require that certain function designators should be r e

placed by modified copies of the corresponding function body, and that these

copies should then be simplified to take advantage of constant arguments.

Typical examples are the record-manipulation functions T and H defined in the

preceding chapter.

The abil i ty to produce open code of this sort could be provided by adding

a macro-definitional faci l i ty to the language, A second approach, more in

keeping with the sp i r i t of the language, would be to permit certain lambda

expressions to be given an OPEN a t t r ibu te .

This raises the question of whether a compiler could determine automatically

when a designator of a lambda-defined function should be replaced by a copy of

the function body. Until recently, the author believed that such an expansion

could be performed for any function which was defined by a nonrecursive

declaration. Unfortunately, this conjecture is disproved by the existence of

the following nonrecursive fixed-point function:

65

Y IS XG (U IS XV G(XX (V V) X) ; U U) ;

which can be used to convert any simply recursive function (i,e,, a function

which calls itself directly but not indirectly via other functions) into an

• .p *• (15)

equivalent nonrecursive function.

Thus suppose a recursive function F is defined by F ISR b, where F is the

only identifier which occurs free in b. Let Fl be the nonrecursive function

defined by Fl IS XF (b). Then the function (Y Fl) can be shown to be equivalent

to F, with the same domain of termination. Horeover, the expansion of a function

designator such as (Y Fl) X by repeated substitution of the definitions of Y

and Fl will never terminate.

Label Value Difficulties

The properties of label values in GEDANKEN have certain potentially

unfortunate consequences.

The use of label-valued references can frequently cause the preservation

of data which will no longer be accessed by a computation. If L is a label-

valued reference, then GOTO L will cause execution to proceed from the control

status denoted by L. But the unchanged cdhtrol status (i.e., environment and

dump) must also be saved in case GOTO L is executed again before the value of

L is changed. If, in fact, such a repeated jump cannot occur, then informa

tion will be saved unnecessarily unless the programmer goes to the trouble of

resetting L immediately after the original jump, (As an example, the program

given in Chapter II for linking the coroutines COHPIIX and ASSEMBLE will pre

serve the control status of these routines unnecessarily.)

Presumably, it would be better to force the programmer to extra trouble in

order to preserve, rather than discard, a reactivated control status. This

might be accomplished by adapting the concept of "process" used in simulation

languages, and providing a basic function for copying processes. However, it

56

is not clear how to combine the process concept with an ALGOL-like use of

label values in a clean manner which does not violate the principle of

completeness.

A second difficulty is the inability of a label value to preserve the

values of references as part of its control status. In the nondeterministic

parser described in Chapter II, the restriction on the use of references in

the function PARSE arises from this problem.

Finally, the use of label values introduces serious problems if a strict

order of evaluation is not imposed on a GEDANKEN program. To permit code

optimization, it is desirable to allow the independent subexpressions of a

compound expression (such as a sequence expression) to be evaluated in any order,

or even to have the steps of their evaluation intermixed. This can be done in

the applicative subset of GEDANKEN without affecting the results of any program.

The introduction of references makes the results indeterminate if expressions

with interfering side effects are executed in parallel.

But when label values are introduced, the number of times various expres

sions are evaluated also becomes indeterminate. Even the simple program

(X IS REF 0; (X := INC X, GOTO L); L: VAL X)

could produce either zero or one. The use of label-valued references leads to

more paradoxical programs, such as

(X IS REF 0; L IS REF 0; M IS REF 0; L ;= Ll;

(X := INC X, (M := Ml; Ml: GOTO L));

Ll: L := L2; GOTO M; L2: VAL X)

which might produce zero, one, or two.

APPENDIX: BASIC FUNCTIONS IN GEDANKEN

67

Predefined
Identifier

ISINTEGER
ISBOOLEAN
ISCHAR
ISATOM
ISFUNCTION
ISREF
ISLABEL

ATOM
UNITSEQ
VECTOR

NCREF
REF
IHPREF
NCSET
SET
VAL
COERCE

GOTO

NCEQUAL
EQUAL
GREATER
CHARGREATER

INC
DEC
NEG
ADD
SUBTRACT
MULTIPLY
DIVIDE
REMAINDER

NOT
INTTODIGIT
DIGITTOINT
READCHAR
WRITECHAR

Defined in
Interpreter

yes
yes
yes
yes
yes
yes
yes

yes
no
no

yes
yes
yes
yes
yes
yes
yes

yes

yes
yes
yes
yes

yes
yes
no
no
no
no
no
no

no
no
no
yes
yes

Number of
Arguments

1
1
1
1
1
1
1

0
1
3

1
1
2
2
2
1
1

1

2
2
2
2

1
1
1
2
2
2
2
2

1
1
1
0
1

Argument
Coercion

yes
yes
yes
yes
yes
no
yes

no
yes

no
yes
yes
no
2nd arg
no
—

yes

no
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
—
yes

Types of
Arguments

any
any
any
any
any
any
any

any
integer, integer,

function
any
any
function, function
reference, any
reference, any
reference

any

label value

any, any
any, any
integer, integer
character, character

Integer
integer
integer
integer, integer
integer, integer
Integer, Integer
integer, integer i 0
integer, integer f 0

Boolean
0 - integer - 9
character

—
character

Type of
Result

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

atom
function
function

reference
reference
reference

any
any
any
any except

reference

—

Boolean

Boolean
Boolean
Boolean

integer

integer
integer
integer
integer
integer
integer
integer

Boolean

character
integer
character
character

68

ACKNOWLEDGEMENTS

The author wishes to thank Dr. H. D. HacLaren of Argonne National Labora

tory and Professor Arthur Evans, Jr., of HIT for their stimulating discussions

and helpful suggestions.

69

REFERENCES

1, van Wijngaarden, A. (Ed.), Hailloux, B.J., Peck, J.E.L,, and Koster, C.H.A.

Draft report on the algorithmic language ALGOL 68. HR 93, Hathematisch

Centrum, Amsterdam, January, 1968,

2, Naur, P. (Ed.) Revised report on the algorithmic language ALGOL 60,

Comm. ACH, 6_ (January. 1963). 1-17.

3, McCarthy, J, Recursive functions of symbolic expressions and their

computation by machine, Part I, Comm. ACM. 3_ (April, 1960), 184-195.

McCarthy, J. et al. LISP 1.5 programmers manual. MIT Press,

Cambridge, Mass., 1962.

4, Wirth, N,, and Weber, H, EULER - a generalization of ALGOL, and its formal

definition: Part I. Part II. Comm. ACH. 9̂ (January, February, 1966), 13-25,

89-99,

5, Evans, A. PAL - a language designed for teaching programming linguistics,

Proc. ACH 23rd Natl. Conf, 1968, pp. 395-403,

6, Wirth, N., and Hoare, C.A.R. A contribution to the development of ALGOL.

Comm. ACM. 9_ (June, 1966). 413-432. _

7, Dahl, O.J., and Nygaard K, SIMULA - An ALGOL-based simulation language,

Comm. ACM, 9_ (September, 1966), 671-578.

Dahl, O.J.. Myhrhaug, B,, and Nygaard, K, SIMULA 67 common base language,

Publ, No, S-2, Norwegian Computing Center, Oslo, Hay, 1958,

8, Floyd, R.W, Nondeterministic algorithms. J. ACH. 14 (October, 1967),-636-644.

9, Reynolds, J,C, An introduction to the COGENT programming system, Proc, ACH

20th Natl, Conf., 1955, pp. 422-436.

Reynolds, J,C. COGENT programming manual. ANL-7022, Argonne National

Laboratory, Argonne, Illinois, March, 1965.

10. Earley, J.C. An efficient context-free parsing algorithm. Carnegie-Mellon

University, Pittsburgh, Pa,, August, 1958.

70

11, Lucas, P., Lauer, P., and Stigleitner, H. Method and notation for the

formal definition of programming languages. TR 25.087. IBM Laboratory

Vienna, June, 1968.

12, Landin. P. J. A correspondence between ALGOL 60 and Church's

lambda-notation. Part I. Part II. Comm. ACM. 8 (February. March. 1965).

89-101. 158-155.

13, McCarthy. J. Towards a mathematical science of computation. Information

Processing 52 (IFIP Congress), Popplewell, C. M, (Ed.). North-Holland

Publishing Co.. Amsterdam. 1953. pp. 21-28.

14, Irons. E. T. A syntax directed compiler for ALGOL 60. Comm ACM. J+.

(January. 1961). 51-55.

15, Evans, A. Private communication.

Morris, J. H. Lambda-calculus models of programming languages,

HAC-TR-57, Project HAC, MIT. Cambridge. Mass.. December, 1968.

ARGONNL NATIONAL LAB WEST

4444 00008272

